MATH 6701 ExaMm 3 REVIEW

Series Solutions

Power Series

Provided z¢ is not a singular point, a continuously differential
function may be expanded about zg as

y(&) = y(wo) +'(w0) (& — 70) + 53" (z0) (& — w0)? +

~ > an(z —z0)". (1)
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A series is convergent on the region where
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Thus, if we have some differential equation
v +p(@)y +q(z)y =0, (3)
we can find two linearly independent power series solutions by

substituting Eq. into Eq. 4 To combine series, get the
powers of (x — zg) to match (n is just a dummy index), e.g.,
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This will give a recurrence relationship with either two or
three terms. If three terms, e.g.,

ent2 = f(n) en + g(n) cnga
set ¢p, = 1 and ¢p41 = 0, then ¢, = 0 and ¢p41 = 1. This will
allow us to solve for any
Frobenius Method

We may solve Eq. about a singular point z¢ (note that the
coefficient of ¥’ is unity!) provided z¢ is a regular singular
point. A singular point is called regular if

P(z) = (z — zo)p(z) and Q(z) = (z — z0)’q(=)

are analytic at xg. If they are, then Eq. has at least one
solution of the form

y=(z—20)" Y an(z—=0)". (4)
n=0

The indicial equation has two roots

r(r—1)+aor +bo =0, (5)
where ag and by are the first terms of the series expansion of
P(z) and Q(x), respectively. If the two roots differ by an in-
teger, a second solution may be given by y2 = yi(x) Inz. If
the two roots are the same, this form is guaranteed. Other-
wise, there will be two independent solutions of the form of

Eq. .

Complex Analysis

A complex number z € C has a real and imaginary part
z=xz+1y, (6)

where z,y € R. In polar form

z=re"?, where r=+22+y2, and 9 = arcsin 2 .
x

Here, 7 = |z| is called the modulus of z and 6 is its argu-
ment. Since 6 is periodic, we call the value of § € (—m, 7] the
principal argument of z, denoted Arg z.

DeMoivre’s theorem implies that

z" =r" (cosmb + isinnd) .
By writing w”™ = z, solving for w gives the n" roots of z

[where k € {ZN (0,n — 1)}]

2 2
wy = rt/m {cos (M) +isin (M)] (7)
n n

Functions of a Complex Variable

A function f may map a complex number to another complex
number f : C — C. Like numbers, they may be written in
terms of their real and imaginary parts

f(2) = u(=z,y) +iv(z,y). (®)
If f is defined in a neighbor-
hood of a point zg, then the
limit £ of the function exists
if and only if for all ¢ > 0,
there exists some § such that
>, », |f(z)—{| < e when |z—2zg] < 4.

The function is continuous at zq if £ = f(z9). If the deriva-
tive of a complex valued function is defined

fz+h) - f(2)
fopiim iy ®
exists, then f is said to be differentiable at that point. If f(2)
is differentiable at z, then the first partial derivatives u and v
exist and the Cauchy-Riemann equations are satisfied:
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Complex functions are called analytic if they are continuous
and differentiable in some region. Functions which are every-
where analytic are called entire. The only bounded, entire
functions are constants.

The logarithm is extended to the complex plane by defining it
as the inverse of exponentiation: e* = w — Inz = w. Then
Inz=1In|z|+i(0 4+ 27n) .
The principal value of Eq. is denoted
Lnz =In|z| +iArgz,

(12)

where Argz € (—m,n]. Note that Arg z is not analytic on any
region including the negative real axis, since there is a discon-
tinuity as the axis is crossed. Real logarithm properties do not
necessarily hold, e.g., Ln 2™ # nLnz in general. To check,
write in polar form, and note that

Lnre? =1Inr + 0.

Contour Integration

A contour integral may be evaluated as a path integral in the

complex plane
ta
L / FIE()] 2/ () dt

In the complex plane, a circle or radius R centered at zg can
be parameterized as z(t) = zo + Re', with t € [0,27]. If f is
analytic in R, then f(z) has an antiderivative F' and Eq. (13)
is independent of the path C and its parameterization

(13)

/C F(2)dz = F(21) — F(20) (C € R). (14)

The Cauchy-Goursat theorem says that if f(z) is analytic
and in a simply connected domain R, then for all C € R

Fred:= (15)
c
Consider for a,b € C, with m and n as positive integers,
(z—a)"
= . 16
)= (16)

The point z = a is said to be a zero of order n, and z = b
a pole of order m. Now if f is analytic in a simply connected
domain R, and C € R is a simple closed contour, then

f(zo):%m 7zf—(zzod and (17)
F =D (z0) = 1&g, (18)

(n—1)!
27 %(z—zo)"
C

where zg is a point on the interior of C. For instance, in the
figure to the right, if f is analytic in R (OR = I'g), then

z
1) dz =0, while
z— 20
T
z
/() dz = 2mif(z0)
z— 20
Ta

For instance, to integrate f(z) = 22/(z — 4) around a circle at
the origin with radius 2, we set compute

2
5]_[7 z ,dz:27ri(22
z—1
C

If f(z) has multiple poles in R, then use partial fractions and
integrate each term separately with Egs. (17)) and (18]

) =2r (i%) = —2ri.
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