
Math 6701 Exam 3 Review

Series Solutions
Power Series
Provided x0 is not a singular point, a continuously differential
function may be expanded about x0 as

y(x) ' y(x0) + y′(x0)(x− x0) +
1

2
y′′(x0)(x− x0)2 + . . .

'
∞∑
n=0

an(x− x0)n . (1)

A series is convergent on the region where

|x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 . (2)

Thus, if we have some differential equation

y′′ + p(x)y′ + q(x)y = 0 , (3)

we can find two linearly independent power series solutions by
substituting Eq. (1) into Eq. (3). To combine series, get the
powers of (x− x0) to match (n is just a dummy index), e.g.,

∞∑
n=3

n(n− 1)anx
n−2 +

∞∑
n=0

cnx
n+1

∣∣∣ let
j = n − 2
k = n + 1

=

∞∑
j=1

(j + 2)(j + 1)aj+2x
j +

∞∑
k=1

ck−1x
k

=

∞∑
`=1

[
(`+ 2)(`+ 1)a`+2 + c`−1

]
x` .

This will give a recurrence relationship with either two or
three terms. If three terms, e.g.,

cn+2 = f(n) cn + g(n) cn+1

set cn = 1 and cn+1 = 0, then cn = 0 and cn+1 = 1. This will
allow us to solve for any

Frobenius Method
We may solve Eq. (3) about a singular point x0 (note that the
coefficient of y′′ is unity!) provided x0 is a regular singular
point. A singular point is called regular if

P (x) = (x− x0)p(x) and Q(x) = (x− x0)2q(x)

are analytic at x0. If they are, then Eq. (3) has at least one
solution of the form

y = (x− x0)r
∞∑
n=0

an(x− x0)n . (4)

The indicial equation has two roots

r(r − 1) + a0r + b0 = 0 , (5)

where a0 and b0 are the first terms of the series expansion of
P (x) and Q(x), respectively. If the two roots differ by an in-
teger, a second solution may be given by y2 = y1(x) lnx. If
the two roots are the same, this form is guaranteed. Other-
wise, there will be two independent solutions of the form of
Eq. (4).

Complex Analysis
A complex number z ∈ C has a real and imaginary part

z = x+ iy , (6)

where x, y ∈ R. In polar form

z = reiθ , where r =
√
x2 + y2 , and θ = arcsin

y

x
.

Here, r = |z| is called the modulus of z and θ is its argu-
ment. Since θ is periodic, we call the value of θ ∈ (−π, π] the
principal argument of z, denoted Arg z.

DeMoivre’s theorem implies that

zn = rn (cosnθ + i sinnθ) .

By writing wn = z, solving for w gives the nth roots of z
[where k ∈ {Z ∩ (0, n− 1)}]

wk = r1/n

[
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)]
(7)

Functions of a Complex Variable

A function f may map a complex number to another complex
number f : C → C. Like numbers, they may be written in
terms of their real and imaginary parts

f(z) = u(x, y) + iv(x, y) . (8)

If f is defined in a neighbor-
hood of a point z0, then the
limit ` of the function exists
if and only if for all ε > 0,
there exists some δ such that
|f(z)−`| < ε when |z−z0| < δ.

The function is continuous at z0 if ` = f(z0). If the deriva-
tive of a complex valued function is defined

f ′(z) = lim
h→0

f(z + h)− f(z)

h
(9)

exists, then f is said to be differentiable at that point. If f(z)
is differentiable at z, then the first partial derivatives u and v
exist and the Cauchy-Riemann equations are satisfied:

∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −

∂v

∂x
, or (10)

∂u

∂r
=

1

r

∂v

∂θ
, and

1

r

∂u

∂θ
= −

∂v

∂r
. (11)

Complex functions are called analytic if they are continuous
and differentiable in some region. Functions which are every-
where analytic are called entire. The only bounded, entire
functions are constants.

The logarithm is extended to the complex plane by defining it
as the inverse of exponentiation: ez = w → ln z = w. Then

ln z = ln |z|+ i (θ + 2πn) . (12)

The principal value of Eq. (12) is denoted

Ln z = ln |z|+ iArg z ,

where Arg z ∈ (−π, π]. Note that Arg z is not analytic on any
region including the negative real axis, since there is a discon-
tinuity as the axis is crossed. Real logarithm properties do not
necessarily hold, e.g., Ln zn 6= nLn z in general. To check,
write in polar form, and note that

Ln reiθ = ln r + iθ.

Contour Integration

A contour integral may be evaluated as a path integral in the
complex plane ∫

C
f(z) dz =

∫ t2

t1

f [z(t)] z′(t) dt . (13)

In the complex plane, a circle or radius R centered at z0 can
be parameterized as z(t) = z0 + Reit, with t ∈ [0, 2π]. If f is
analytic in R, then f(z) has an antiderivative F and Eq. (13)
is independent of the path C and its parameterization∫

C
f(z) dz = F (z1)− F (z0) (C ∈ R) . (14)

The Cauchy-Goursat theorem says that if f(z) is analytic
and in a simply connected domain R, then for all C ∈ R

	∫
C

f(z) dz = 0 . (15)

Consider for a, b ∈ C, with m and n as positive integers,

f(z) =
(z − a)n

(z − b)m
. (16)

The point z = a is said to be a zero of order n, and z = b
a pole of order m. Now if f is analytic in a simply connected
domain R, and C ∈ R is a simple closed contour, then

f(z0) =
1

2πi

	∫
C

f(z)

z − z0
dz and (17)

f (n−1)(z0) =
(n− 1)!

2πi

	∫
C

f(z)

(z − z0)n
dz , (18)

where z0 is a point on the interior of C. For instance, in the
figure to the right, if f is analytic in R (∂R = Γ2), then

	∫
Γ1

f(z)

z − z0
dz = 0 , while

	∫
Γ2

f(z)

z − z0
dz = 2πif(z0) .

For instance, to integrate f(z) = z2/(z − i) around a circle at
the origin with radius 2, we set compute

	∫
C

z2

z − i
dz = 2πi

(
z2
∣∣∣
z=i

)
= 2π

(
i2
)

= −2πi .

If f(z) has multiple poles in R, then use partial fractions and
integrate each term separately with Eqs. (17) and (18)

az2 + bz + c

(z − z1)(z − z2)2
=

A

z − z1
+

B

z − z2
+

C

(z − z2)2
.
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