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1 Numerical Methods

1.1 Motivation

Why do we need numerical methods? After all, don’t solutions to the wave equation have the
form

p = f (x − ct) + g(x + ct) ? (1)

Well, yes, in the case of a linear, unbounded, unforced, homogeneous medium. For real-
istic environments, like in the body with different tissues, interfaces, and bone, analytical
approaches aren’t really an option. In these cases, we make numerical approximations to our
governing equations to be able to write computer programs to solve them.

1.2 Basic Finite Differences

Finite differences are a way to approximate derivatives by using the values on a discrete
computational grid, with the idea that at small grid spacings, the approximation is reasonable.
Consider the Taylor expansions
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Now subtract Eq. (3) from Eq. (2) so and divide by 2∆x
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Thus we can write
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i.e., that the derivative of the function may be approximated from its values at fixed points.
Because the approximation in Eq. (5) has discarded terms of order (∆x)2 and higher, we must
be sure that these terms are small so that the approximation is valid. Determining the upper
limit of the step size ∆x is out of scope. But for our purposes, a good benchmark is that ∆x
must be appreciably smaller than wavelength.

Now if we were to instead add Eq. (2) to Eq. (3), and by using the notation p(m∆x,n∆t) =
pn

m, we have
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Then with our initial condition for p, and use of the governing equations† and boundary
conditions‡ we can use Eqs. (6) and (7) to compute the field over time.

Consider a 1D wave where the sound speed is a function of the position (i.e., the medium
is heterogeneous). Then, the finite difference equation becomes
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Then, if we use the shorthand ξm ≡ (cm∆t/∆x)2, Eq. (8) can be rearranged to

pn+1
n = −pn−1

m + 2pn
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(
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)
. (9)

Equation (9) describes a matrix equation which must be inverted to find the pressure at
subsequent time steps. Details of the process for more dimension as well as the accuracy of
the method, as well as the grid spacings that must be chosen to ensure out solution doesn’t
blow up is a field unto itself, but some basic guidelines are as follows.

1.3 Limitations on Method

While the relations in Eqs. (6) and (7) can always be used, there are some limitations. First
note the terms we’re ignoring, which will lead to errors. These errors will have order

ϵ ∼ ∥(∆t)2 + (∆x)2∥ , (10)

†The wave equation may be thought of as the governing equation for a homogeneous medium. In the heteroge-
neous medium case, the governing equations must be written from the more general conservation laws, since,
e.g., ∇ρ , 0. See the k-Wave documentation for full details.

‡While simulations with totally rigid or completely traction-free boundary conditions may be of interest, here
we typically want waves that leave the domain to exit and not come back. In this case, an absorbing boundary
layer or perfectly matched layer is an appropriate choice; see Sec. 3.
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and accumulate over time. In order to ensure that these errors do not grow uncontrollably,
the CFL condition is placed on the Courant number C:

C ≡
c∆t
∆x

 . (11)

Note that the CFL condition ensures stability (i.e., that the error terms will not blow up as
the simulation runs), not necessarily accuracy (i.e., that the solution we get is sufficiently
close to the correct answer).

Example 1: Stable FDTD Simulation Requirements

Suppose we want to run a 3D simulation with a skull bone about 20 cm across.
Take cmax = 2000m/s and ρmax = 1580 kg/m3, and want to use a frequency of
2MHz.

What is the shortest possible wavelength?
Ans: λ = cmax/ fmax = (2000m/s)/(2MHz) = 1mm.

A rule of thumb is 10 points per wavelength. How many grid points do
we need?
Ans: From above, we need ∆x = 1mm/10 = 100 µm . Then in each dimension,
N = (Dx/∆x) = [(20 cm)(100 µm)] = 2000, so we need N3 = 2 × 109 grid points.
Note that at double precision, this requires 64GB of memory to hold a single
field value.

What space step we need to have C < 1?
Ans: ∆t = C∆x/cmax = [(1)(100 µm)]/(2000m/s) = 50 ns.

1.4 Pseudospectral Methods & k-Wave

Recall that plane waves have the nice property that

∂p
∂x
=
∂

∂x
[
P0eik x] = ik p. (12)

Well the (spatial) Fourier transform allows us to write the pressure as a sum of plane waves
with different wavenumbers. Then, we can take the derivatives of all components separately,
add them back up, and take the inverse transform! That is,

∂p
∂x
= F−1

k

{
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[
∂p
∂x

] }
= F−1

k

{
ik Fk [p]

}
. (13)
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Figure 1: Comparison of first and second order finite difference schemes with the
spectral derivative calculation.

Example 2: Prove It

Without loss of generality, consider the 1D case. By definition,

Fk
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]
≡
∫ +∞
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Integrating by parts gives
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Now guaranteeing the existence of the transform requires that p is square inte-
grable. Thus since eikx x has unity modulus, it must be true that limx→±∞ p = 0.
Thus the first term in Eq. (15) must vanish, leaving
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This has the benefit that spatial derivatives will be exact, provided our grid spacing is at
least half the shortest wavelength; see Fig. 1. Additionally, pseudospectral methods replace,
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in the first-order time discretizations,

∆t →
(
sinc

cref k∆t
2

)
∆t (17)

(termed the “k-space operator”) to enable larger time steps (note that these become equivalent
as ∆t → 0). Additionally, k-Wave uses a staggered grid to improve the order of the method.

2 k-Wave Structures

The k-Wave simulation codes expect as inputs matlab structures describing the environ-
ment, sources, receivers, and simulation options. Each is discussed briefly in the following,
in the rough order in which they should be defined. All examples are given in 2D (x, y), but
extension to 3D is mostly straightforward with the addition of a z-component.

2.1 kgrid

The kgrid defines the computational grid on which the simulation will be run. It can be
assembled with the built-in function kWaveGrid by specifying the number of points in each
dimension, and the spacing in each direction. All values (except absorption, see Sec. 2.2.1)
are specified in SI units.

1 % Set grid dimensions (10 cm by 10 cm square)
2 Nx = 100;
3 dx = 0.1E−3; % [m]
4 Ny = 100;
5 dy = 0.1E−3; % [m]
6
7 % Define k−Wave grid
8 kgrid = kWaveGrid( Nx, dx, Ny, dy );

A word of caution: k-Wave uses the coordinate system (x, y) such that addressing is row,
column. This is the natural choice for the coding, but beware that plots will appear rotated
(since x varies along the rows, it appears as the vertical dimension). Keep this in mind when
defining your medium, sources (Sec. 2.3), and sensors (Sec. 2.4).

2.2 medium

The medium structure contains at a minimum the sound speed and density at every point
of the the kgrid. These may be set as constants for a uniform medium.

1 % Define homogeneous properties
2 c0 = 1500; % [m/s]
3 rho0 = 1000; % [kg/m^3]
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4
5 % Assign to kWaveGrid
6 medium.sound_speed = c0;
7 medium.density = rho0;

If we want the medium to have properties that vary in space, we will need to define them
over the grid. For example, suppose we want to have c(x, y) = c0 (1 − |x |/x0), then we would
have

1 % Define sound speed field
2 c0 = 1500; % [m/s]
3 x0 = 1; % [m]
4 c = c0.*( 1 − abs(kgrid.x)./x0 );
5
6 % Assign to k−Wave medium
7 medium.sound_speed = c;

Figure 2: The medium contains a matrix that defines the sound speed and density
(and optionally the absorption coefficient and nonlinearity parameter) at each
point in kgrid.

2.2.1 Absorption

Absorption in k-Wave is modeled with a power-law attenuation model. The details are out of
scope, but essentially the absorption is incorporated in the governing equations as

α(x, y) = α0(x, y) · f β . (18)

Here, α0 is the attenuation coefficient decibels per centimeter per megahertzβ. That is
to say, at 1MHz, the wave is attenuated at α0 dB/cm. This the most common unit, however,
these values are sometimes reported in nepers per meter, so use caution when looking them
up. Different materials have different power law coefficients and exponents; however, only
the coefficient may be spatially dependent.
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1 % Define attenuation field
2 alpha0 = 0.2; % Value for blood [dB/cm/MHz^beta]
3 beta = 1.2; % Average for whole domain
4
5 % Assign to k−Wave medium
6 medium.alpha_coeff = alpha0;
7 medium.alpha_power = beta;

2.2.2 Nonlinearity Parameter

In addition to the sound speed, density, and attenuation coefficient, the nonlinearity pa-
rameter may be set in the medium.BonA field. Note that the acoustic nonlinearity is often
specified as β = 1 + B/2A, so use caution when assigning this parameter.

2.2.3 Thermal Properties

For thermal simulation in k-Wave, a few additional fields are required to solve the governing
equation. They are specified the same way as the sound speed and density (i.e., they can be
spatially-dependent), for instance

1 % Heat diffusion proerpties
2 k = 0.52; % [W/(m.K)]
3 Cp = 3540; % [J/(kg.K)]
4
5 % Perfusion properties
6 rhoBlood = 1060; % [kg/m^3]
7 CpBlood = 3617; % [J/(kg.K)]
8 perfusion = 0.01; % [1/s]
9 TBlood = 37; % [deg C]
10
11 % Assign to medium
12 medium.thermal_conductivity = k;
13 medium.specific_heat = Cp;
14 medium.blood_density = rhoBlood;
15 medium.blood_specific_heat = CpBlood;
16 medium.blood_perfusion_rate = perfusion;
17 medium.blood_ambient_temperature = TBlood;

2.2.4 Time Array

By default the time vector is automatically created by k-Wave when the simulation is run.
However, if we want to specify a source pressure as a function of time (see Sec. 2.3), we’ll
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need to have this before running the simulation. In this case, we can set a minimum CFL
number and end time and have k-Wave create an appropriate time vector for us with the
makeTime function.

1 % Define CFL number. Should be as small as possible (though smaller numbers
2 % will cause longer simulation times).
3 minCfl = 0.3;
4
5 % Define time to end the simulation at
6 tMax = 1E−3; % [s]
7
8 % Create time array
9 kgrid.t_array = makeTime( kgrid, medium.sound_speed, minCfl, tMax );

2.3 source

The source structure allows specification of the pressure or velocity at arbitrary points on
the grid. This is accomplished with two fields:†

1. p_mask: A binary mask is created indicating where the pressure will be specified.

2. p: A matrix containing the time series for each point in p_mask.

2.3.1 source.p_mask

This grid is a matrix of 1s and 0s the same size as the kWaveGrid. Note that we must specify
an index in the grid to place the source. This is a little cumbersome, since it’s perhaps more
natural to specify its position. However, this conversion between position and index may be
accomplished as below:‡

1 % Define position of source
2 xSrc = 1E−3;
3 ySrc = −3E−3;
4
5 % Find indices closest to desired point
6 [~, xInd] = min( abs( xSrc − kgrid.x_vec ) );
7 [~, yInd] = min( abs( ySrc − kgrid.y_vec ) );
8
9 % Set the mask to 1 at the desired point
10 source.p_mask( xInd, yInd ) = 1;

†k-Wave is capable of defining velocity sources as well, but for simplicity only the pressure case is discussed
here.

‡Note here we are using the x_vec and y_vec (rather than x and y) fields of the kgrid since we want to
search along these 1D vectors.
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2.3.2 source.p

For each point where source.p_mask is one, a pressure may be specified, either as a
constant or as a time-varying value. The time series are specified as an Ns-by-Nt matrix,
where Ns is the number of sources (i.e., the number of ones in source.p_mask) and Nt is
the number of time points (i.e., the length of kgrid.t_array).

Figure 3: Specifying source time series.

The time series are assigned by the index on the source, rather than by the position. If
we want to emit two sine waves with frequencies f1 and f2 as in Fig. 3, we would specify the
time series in source.p in the order in which the 1s appear in source.p_mask.

2.3.3 Thermal Properties

For thermal simulations, two additional source properties are required: the initial temperature
distribution on the grid, and the locations and strengths of any heat sources. The temper-
ature may be specified through the source.T0 field, and any sources of heat through the
source.Q field.

2.4 sensor

The sensor structure specifies where field variables will be recorded. Just like the source
structure, it has a mask field sensor.mask that is a binary matrix defining at which indices
the pressure (or velocity as specified, see Sec. 2.4.1) will be recorded. The source and sensor
masks are summarized in Fig. 4.
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Figure 4: Source time series are defined relative to the order of the non-zero
entries in source.p_mask.

2.4.1 sensor.record

The sensor.record field specifies which variables will be recorded at the sensor positions
defined by sensor.mask. For instance, if we want to record the pressure and velocity at
each sensor, we would use

1 % Record the pressure and velocity time series
2 sensor.record = { 'p', 'u' };

Of particular interest is the p_max_all, which stores the maximum pressure over the sim-
ulation at each of the entire grid. This is useful so that we don’t have to specify a sensor at
every grid point and consequently the whole time series for each.

2.4.2 sensor_data

The output of the simulation is stored in a structure sensor_data that contains the values
of the parameters specified in the sensor.record field.† Time series values (e.g., the
pressure or particle velocity) are indexed similarly to the source.p source conditions (see
Sec. 2.3). For instance, if sensor.mask has 10 non-zero elements, then sensor.p will
have 10 rows.

2.5 Helper Functions

To make specifying extended sensors or sources faster, k-Wave provides some helper func-
tions.

2.5.1 make_circle

Because the grid is square and focused ultrasound transducers are usually curved, k-Wave
includes the make_circle function to set the source.p_mask such that an arc is formed

†This variable name can be arbitrary, but the documentation and these notes will always call it sensor_data.
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while keeping the density of sources as constant as possible. Focused ultrasound transducers
are often characterized by their F-number: F# ≡ (Focal Distance)/(Aperture). However, the
make_circle requires the angle of the arc. To convert, call the focal distance d and the
aperture a, so that F# = d/a . Then half aperture is given by a/2 = d sin θ, so that

sin θ =
a
2d

→ θ = arcsin
1

2F#
. (19)

Then we can create a transducer with a 3 cm focal distance and F-number of 1 as follows
(assuming we have already defined the grid, see Sec. 2.1†).

1 % Define FUS transducer properties
2 xFocus = 0E−3; % [m]
3 yFocus = 0E−3; % [m]
4 fNumber = 1;
5 focalDistance = 3E−2; % [m]
6
7 % Find indices closest to desired focal point
8 [~, xInd] = min( abs( xFocus − kgrid.x_vec ) );
9 [~, yInd] = min( abs( yFocus − kgrid.y_vec ) );
10
11 % Convert radius to number of points
12 radius_inds = focalDistance./kgrid.dx; % Assumes square grid
13
14 % Calculate angle
15 theta = asin( 1./( 2.*fNumber ) ); % [rad]
16
17 % Get circle and assign it as the source
18 circle = makeCircle( kgrid.Nx, kgrid.Ny, xInd, yInd, radius_inds, theta);
19 source.p_mask = circle;

2.5.2 Interpolating the Field

Suppose we have a map of sound speed and density, but the resolution is higher than needed.
We can use interpolation to adjust the size of the grid. Suppose the sound speed field c =
c(x, y) is stored in a variable called soundSpeed, with grid spacings dx and dy. Then, to
decrease the resolution by 30% (for example), we would have

1 % Get size of field
2 [Nx, Ny] = size( soundSpeed );
3 resizeFactor = 0.7;

†Note that the make_circle function makes a circle on the grid, regardless of the dimensions. So only use
this function if your computation grid is square, i.e., if ∆x = ∆y.

11



4
5 % Get interpolation vectors
6 [X, Y] = meshgrid( ...
7 dx*[ 0 : Nx − 1], ...
8 dy*[ 0 : Ny − 1] ...
9 );
10 [XI, YI] = meshgrid( ...
11 (resizeFactor.*dx).*[ 0 : resizeFactor.*(Nx − 1) ], ...
12 (resizeFactor.*dy).*[ 0 : resizeFactor.*(Ny − 1) ] ...
13 );
14
15 % Interpolate
16 soundSpeedInterp = interp2( X, Y, soundSpeed, XI, YI, 'linear');

2.5.3 Padding the Array

Suppose the material property matrices we have (e.g., those imported from a CT scan) don’t
have enough room to place our sources or sensors right where we want them in the
simulation. In this case, it might be useful to pad the domain with the edge values or water
values to give some more flexibility.

1 % Set how much space to add in each dimension
2 xExtra = 5E−3; % [m]
3 yExtra = 5E−3; % [m]
4
5 % Determine number of pixels to add
6 padNx = round( xExtra./kgrid.dx );
7 padNy = round( yExtra./kgrid.dy );
8
9 % Pad with water values
10 cWater = 1500; % [m/s]
11
12 % Add in both directions
13 c = medium.sound_speed;
14 cNew = padarray( c, [padNx, padNy], 'replicate', 'both' );

Arrays may be padded in the x or y direction only (e.g., set xExtra to 0), or only in one
direction by using the ’pre’ or ’post’ options. Check the matlab documentation for the
padarray function for full details.
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3 Simulation

Once the grid, medium, source, and sensors are defined, running acoustic and thermal sim-
ulations is straightforward.

3.1 Acoustic Simulation

3.1.1 Options

There are a few options that can be specified as name-argument pairs. Reasonable defaults
are used, so it is not necessary to specify these on your first pass. However, there are several
recommended ones, of which brief description and the default (or recommended) value is
given below.

• ’DataCast’ (’single’) This specifies the precision of the values stored at each
time step. By using single (rather than double) precision, the simulations are faster due
to efficiencies in the FFT implementation.

• ’DisplayMask’ (’false’) The position of the sensors may be shown during the
simulation if this field is set to true.

• ’PlotSim’ (’true’) This flag determines whether or not the simulation is plotted as
it is run. Recommended for the first time, to ensure that the geometry is right and that
an appropriate grid size was chosen (numerical instability will often cause obviously
divergent field values). However, it causes a modest slowdown in the computation time,
so recommended to set to false if many simulations are required.

• ’PMLSize’ (10) This is the size of the perfectly matched layer (PML) used in the
simulation. This is an artificial layer in the computational domain designed to minimize
reflections as the wave propagates to the edge of the simulated area. More points will
provide better absorption at the boundary, but will in turn increase the grid size and
the computational cost.

3.1.2 Running the Simulation

Once all parameters and options have been set, running the simulation is achieved with
a call of kSpaceFirstOrder2D. Assuming the kgrid, medium, source, and sensor
structures have been defined as discussed in Sec. 2, we can run the simulation as follows:

1 % Set simulation options
2 simOptions = { ...
3 'DataCast', 'single', ...
4 'DisplayMask', false, ...
5 'PMLSize', 10, ...
6 'PlotSim', true ...
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7 };
8
9 % Run simulation
10 sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor, simOptions);

3.2 Thermal

The thermal simulation is performed in through the kWaveDiffusion object. Once the
kgrid, medium, source, and sensor structures have been defined as appropriate (includ-
ing the thermal properties), the kdiff object may be created and then the heat diffusion
simulated for the desired number of time steps:

1 % Create kWaveDiffusion object
2 kdiff = kWaveDiffusion(kgrid, medium, source, sensor);
3
4 % Run simulation for 2 min
5 tFinal = 120; % [s]
6 Nt = 100; %
7 dt = round( tFinal./Nt );
8 kdiff.takeTimeStep(Nt, dt)
9
10 % Plot results
11 kdiff.plotTemp;
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