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Definitions

A function f continuous on an open connected set D € R?
satisfies the Lipschitz condition if

[f(t, 21) = f(t,22)| < K|z1 — 22|
for all (t,z1), (t,z1) € D. NB If f is Lipschitz continuous,

then there exists a unique solution to ' = f with z(t9) = zo
in a finite interval including tg.

A value z is said to be of order p [z = O(hP)] if there ex-
ist positive constants hg and C such that |z| < ChP for all
h € (0, ho).

A scheme is said to be convergent on an interval Z if, for all
tn €Z, |xn — z(tn)] > 0as h — 0.

A scheme is said to be consistent if its difference operator £
has finite positive order p. Consistency implies convergence.

A linear multistep method is zero-stable if all roots of its
characteristic polynomial p(r) are such that |r| < 1, and any
r = 1 are simple roots. A method is zero-stable if and only if
it is consistent and convergent.

An LMM is absolutely stable if its application to ' = Az
(with Re A < 0) with a given value of h = hJ, its solutions
tend to 0 as n — 0 for any starting values.

An LMM is A-stable if its region of absolute stability in-
cludes the entire left half plane (i.e., for all Reh < 0).

Taylor Series Approximations

Only first-order ODEs will be discussed, since any higher or-
der linear ODE may be written as a system of these first order
problems. Consider

2" 4+ ax” + bz’ +cx=f.
Now if we let y = 2’ and z = 3y’ = z’/, then we can write
=y
y =z
2= —(az+by+ecx)+ f
Euler’s Method

Euler’s method solves the IVP z/(t) = f(z,t), zo = n with the
scheme

Tntl = Tn + hfn . (1)
Since z(t + h) = z(t) + ha'(t) + %h%c"(t) + O(h3), we see that
remainder terms have order O(h?).

Proof of Convergence Consider the IVP for some constant
A and function g(t)

2’ (t)=xz+g, zo=1.
Euler’s method gives

Tn+1 = Az, + g(tn) .

A Taylor series expansion of the solution gives z(t,+1) =
z(tn) + ha'(tn) + O(h?), so defining the error e,11 =
z(tn) — T, gives

€ntl1 = (1 + h)\)en + Tht1,
where T = O(h?) is error due top the truncation of the
Taylor series. Since we know the initial condition, eg = 0,

and then the error at each subsequent point is

ent1 = (1 + hX)en + Thy

= en=>_ (1+hN)"7'Ty,
j=1

Then, since |1 + hA| < 1 4+ hX < el [note from the

expansion that e* = 1 + z + O(z?)],
1+ h)\|n_j < IM(n=3) _ IXtn—j « Xty

where ty = nh is the final time. Then, since by definition
|T5] < Ch? for some finite C, we can say that each term of
Eq. is bounded by (CelMt'f)h2, and thus

lenl < n (CeMTR?) = nhhCel s =ty hoel M

Higher Order Methods

Higher-order accuracy can be achieved by retaining more
terms in the Taylor series, i.e.,

h‘2 / h3 1"
Tngr = ot bt ot (@)

This assumes that f, is continually differentiable, and such
derivatives may not be easy to determine.

Linear Multistep Methods

To avoid having to determine analytical derivatives (as second
and higher-order Taylor series methods require), multi-step
methods approximate these derivatives with known values.
Consider that for any function z(t) whose first three deriva-
tives are defined, we can write

2 (t+h) = 2/ (t) + hz" (t) + O(h?). (3)
Then expanding z(t) and using Eq. ,

2(t 4+ h) = z(t) + h2'(t) + h;z”(t) +O(h?) (4)
2

=z(t) +ha'(t) + % {% [2'(t+h) — z’(t)]} +O(h®)

=z(t) + g [2/(t+h) + 2/ (1)] + O(h3). (5)

If we have an ODE 2/ = f we’re trying to solve, then the
scheme gives the trapezoidal rule

Tl = Tp + g(fn-u + fn) . (6)

Now consider the expansion for 2/(t — h) = 2/(¢t) — h2"(t) +
O(h?), so that re-arranging and substituting into Eq. (4)) gives
(omitting the algebra)

2(t+h) = 2(t) + g [32'(t) — 2/ (t — )] + O(K®),  (7)
or as a scheme
_ h
Tnt+l = Tp + 5(3fn+fn71) . (8)

This scheme requires values at t,,—1 and t, to compute the
value at 41 and is thus a multistep method. However, they
have the benefit of having second-order accuracy.

Functional Iteration

Implicit methods (i.e., those which require knowledge of fr41)
will yield a nonlinear equation whose roots we need to know.
One way to find these is functional iteration, where we start

with an initial guess, (say mg?lq & xn), and then plug the
result into the initial expression. So for backward Euler

Y = wn +1f (a2 )

Consistency, Convergence, and Zero-Stability

Two step LMMs can be written most generally as

Tp+2 + Q1Cpt1 + Q0T = h(ﬁzfn+2 + B1fnt+1 + 50fn) .

A scheme is implicit if B2 # 0 and ezplicit otherwise. The
difference operator L for the scheme is

L=z(t+2h)+ arz(t + h) + aoz(t)

— h[B27/(t+2h) + B/ (t+ 1)+ oz (O] . (10)
By Taylor expanding each term, we can find the order p of

L = O(hPT1). If p > 0, then the method is consistent. To
test for consistency, assemble the characteristic polynomials

p(r)=r?+air+ag and o(r) = Bor? + fir+Bo. (11)

The method is consistent if and only if p(1) = 1 and
p'(1) = o(1). In k-step cases, this condition becomes

k k k
Zaj:O and Zjozjzz,é’j
=0 =0 =0

Methods whose characteristic polynomial [p(r) in Eq. ]
has roots with magnitude less than 1 (root condition) are
zero-stable. If a method is consistent is consistent and zero-
stable, then it is convergent. Absolute stability is is true
when p(r) = p(r) — hAo(r) obeys the root condition.
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