
Math 6646 Exam 1 Review

Definitions
A function f continuous on an open connected set D ∈ R2

satisfies the Lipschitz condition if

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|
for all (t, x1), (t, x1) ∈ D. NB If f is Lipschitz continuous,
then there exists a unique solution to x′ = f with x(t0) = x0
in a finite interval including t0.

A value z is said to be of order p [z = O(hp)] if there ex-
ist positive constants h0 and C such that |z| ≤ Chp for all
h ∈ (0, h0).

A scheme is said to be convergent on an interval I if, for all
tn ∈ I, |xn − x(tn)| → 0 as h→ 0.

A scheme is said to be consistent if its difference operator L
has finite positive order p. Consistency implies convergence.

A linear multistep method is zero-stable if all roots of its
characteristic polynomial ρ(r) are such that |r| ≤ 1, and any
r = 1 are simple roots. A method is zero-stable if and only if
it is consistent and convergent.

An LMM is absolutely stable if its application to x′ = λx
(with Reλ < 0) with a given value of ĥ = hλ, its solutions
tend to 0 as n→ 0 for any starting values.

An LMM is A-stable if its region of absolute stability in-
cludes the entire left half plane (i.e., for all Re ĥ < 0).

Taylor Series Approximations
Only first-order ODEs will be discussed, since any higher or-
der linear ODE may be written as a system of these first order
problems. Consider

x′′′ + ax′′ + bx′ + cx = f.

Now if we let y = x′ and z = y′ = x′′, then we can write

x′ = y

y′ = z

z′ = −(az + by + cx) + f

Euler’s Method
Euler’s method solves the IVP x′(t) = f(x, t), x0 = η with the
scheme

xn+1 = xn + hfn . (1)

Since x(t+ h) = x(t) + hx′(t) + 1
2!
h2x′′(t) +O(h3), we see that

remainder terms have order O(h2).

Proof of Convergence Consider the IVP for some constant
λ and function g(t)

x
′
(t) = λx+ g , x0 = 1 .

Euler’s method gives

xn+1 = λxn + g(tn) .

A Taylor series expansion of the solution gives x(tn+1) =

x(tn) + hx′(tn) + O(h2), so defining the error en+1 ≡
x(tn)− xn gives

en+1 = (1 + hλ)en + Tn+1 ,

where T = O(h2) is error due top the truncation of the
Taylor series. Since we know the initial condition, e0 = 0,
and then the error at each subsequent point is

en+1 = (1 + hλ)en + Tn+1

=⇒ en =

n∑
j=1

(1 + hλ)
n−j

Tj ,

Then, since |1 + hλ| ≤ 1 + hλ ≤ eh|λ| [note from the
expansion that ex = 1 + x+O(x2)],

|1 + hλ|n−j ≤ eh|λ|(n−j) = e
|λ|tn−j ≤ e|λ|tf ,

where tf = nh is the final time. Then, since by definition

|Tj | ≤ Ch2 for some finite C, we can say that each term of

Eq. (2) is bounded by (Ce|λ|tf )h2, and thus

|en| ≤ n
(
Ce
|λ|tf h

2
)

= nhhCe
|λ|tf = tf hCe

|λ|tf

Higher Order Methods

Higher-order accuracy can be achieved by retaining more
terms in the Taylor series, i.e.,

xn+1 = xn + hfn +
h2

2!
f ′n +

h3

3!
f ′′n + . . . . (2)

This assumes that fn is continually differentiable, and such
derivatives may not be easy to determine.

Linear Multistep Methods
To avoid having to determine analytical derivatives (as second
and higher-order Taylor series methods require), multi-step
methods approximate these derivatives with known values.
Consider that for any function z(t) whose first three deriva-
tives are defined, we can write

z′(t+ h) = z′(t) + hz′′(t) +O(h2) . (3)

Then expanding z(t) and using Eq. (3),

z(t+ h) = z(t) + hz′(t) +
h2

2
z′′(t) +O(h3) (4)

= z(t) + hz′(t) +
h2

2

{
1

h

[
z′(t+ h)− z′(t)

]}
+O(h3)

= z(t) +
h

2

[
z′(t+ h) + z′(t)

]
+O(h3) . (5)

If we have an ODE x′ = f we’re trying to solve, then the
scheme gives the trapezoidal rule

xn+1 = xn +
h

2

(
fn+1 + fn

)
. (6)

Now consider the expansion for z′(t − h) = z′(t) − hz′′(t) +
O(h2), so that re-arranging and substituting into Eq. (4) gives
(omitting the algebra)

z(t+ h) = z(t) +
h

2

[
3z′(t)− z′(t− h)

]
+O(h3) , (7)

or as a scheme

xn+1 = xn +
h

2

(
3fn + fn−1

)
. (8)

This scheme requires values at tn−1 and tn to compute the
value at tn+1 and is thus a multistep method. However, they
have the benefit of having second-order accuracy.

Functional Iteration

Implicit methods (i.e., those which require knowledge of fn+1)
will yield a nonlinear equation whose roots we need to know.
One way to find these is functional iteration, where we start

with an initial guess, (say x
[0]
n+1 ≈ xn), and then plug the

result into the initial expression. So for backward Euler

x
[j+1]
n+1 = xn + hf

(
tn+1, x

[j]
n+1

)
(9)

Consistency, Convergence, and Zero-Stability

Two step LMMs can be written most generally as

xn+2 + α1cn+1 + α0xn = h
(
β2fn+2 + β1fn+1 + β0fn

)
.

A scheme is implicit if β2 6= 0 and explicit otherwise. The
difference operator L for the scheme is

L ≡ z(t+ 2h) + α1z(t+ h) + α0z(t)

− h
[
β2z
′(t+ 2h) + β1z

′(t+ h) + β0z
′(t)
]
. (10)

By Taylor expanding each term, we can find the order p of
L = O(hp+1). If p > 0, then the method is consistent. To
test for consistency, assemble the characteristic polynomials

ρ(r) = r2 + α1r + α0 and σ(r) = β2r
2 + β1r + β0 . (11)

The method is consistent if and only if ρ(1) = 1 and
ρ′(1) = σ(1). In k-step cases, this condition becomes

k∑
j=0

αj = 0 and
k∑

j=0

jαj =

k∑
j=0

βj

Methods whose characteristic polynomial [ρ(r) in Eq. (11)]
has roots with magnitude less than 1 (root condition) are
zero-stable. If a method is consistent is consistent and zero-
stable, then it is convergent. Absolute stability is is true
when p(r) = ρ(r)− hλσ(r) obeys the root condition.
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