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0 The Problem

Figure 1: (Left) Normalized axial pressure for focused ultrasound transducers
with the indicated values of 𝑘𝑎. (Right) Normalized transverse pressure in the
focal plane.

Focused ultrasound transducers allow localization of the acoustic energy at a desired point as
in Fig. 1. This allows us to, for example, deposit thermal energy for ablation as discussed last
lecture. However, the focusing relies on constructive interference; a change in the acoustic
impedance of the medium, then the resulting focus may be destroyed (see Fig. 2).

Figure 2: Simulation of aberration of the focal field of a 1MHz transducer
(230mm diameter, 𝐹# = 1) due to propagation through the skull. Adapted from
Fig. 9 of Ref. 1.
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Example 1: Trans-skull Challenges

Why is the focus destroyed?
Ans: Mainly refraction. The change in acoustic impedance between different
media causes the path (and thus the phase) of the waves, and they no longer
interfere constructively at the focus.

Other Challenges?
Reflection due to impedance mismatch, absorption causing heating.

1 Focusing with Phased Arrays

1.1 Homogeneous Approach

A spherical transducer ensures that the sound leaves the surface such that the distance to the
focal spot is the same for any part of the surface. But, this means if we want to change the
focal position, we have to physically move the transducer.

(a) (b)

Figure 3: (a) Steering and (b) focusing with a phased array.

However, suppose we have an array of individual elements we can control individually. If we
are able to control the time delay of each element, then we can steer the emitted radiation
(Fig. 3a) or achieve focusing (Fig. 3b). A huge advantage of phased arrays is that we can
focus to arbitrary locations, not necessarily just along the axis.

Example 2: Focusing at Arbitrary Point

What are the time delays to focus at are arbitrary point (𝑥 𝑓 , 𝑧 𝑓 )?
Ans: Well, we want all the waves to arrive in phase (i.e., at the same time). So
the delays will have to be equal to the travel time from each transmitter to the
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Example 2 (cont.)

desired focus. Call the plane of the transducer the 𝑥-axis, and the perpendicular
direction the 𝑧.

The distance to the focal point for the 𝑛th

transmitter is

𝑅𝑛 =
√
[𝑥 𝑓 − (𝑛 − 1)𝑑]2 + 𝑧2𝑓 .

Then, the 𝑛th delay will be given by

𝜏𝑛 = 𝑅𝑛/𝑐0 .

1.2 Through a Layer

Consider the model problem of two sources, whose fields we wish to have constructively
interfere at the focal point as in Fig. 4. Two sources of the same frequency 𝜔 are separated by
distance ℓ and want to focus through a layer of thickness 𝑑. What should be the time delays
so that the rays arrive in phase?

Figure 4: Focusing through a layer
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Looking at each source, the total path length along each of the dotted lines is†

𝑟𝑖 =
𝑧 𝑓

sin 𝜃𝑖
. (1)

The length of the path within the layer is

𝑟layer,𝑖 =
𝑑

sin 𝜃𝑖
. (2)

So the time to travel along the line is

𝑡𝑖 =
(
Time in 𝑐1

)
+

(
Time in 𝑐2

)
=

1

𝑐1

(
𝑟𝑖 − 𝑟layer,𝑖

)
+ 1

𝑐2
𝑟layer,𝑖

=
1

𝑐1

(
𝑧 𝑓

sin 𝜃𝑖
− 𝑑

sin 𝜃𝑖

)
+ 1

𝑐2

𝑑

sin 𝜃𝑖

=
1

𝑐1

𝑧 𝑓

sin 𝜃𝑖
+ 𝑑

sin 𝜃𝑖

(
1

𝑐2
− 1

𝑐1

)
(3)

Example 3: Limiting Cases of Eq. (3)

What is the Time With No Layer?
Ans: 𝑡𝑖 = (𝑧 𝑓 /𝑐1)/sin 𝜃𝑖.

What if Layer has 𝑐2 = 𝑐1?
Ans: Then second term vanishes, left with no layer case.

Now, what’s the time delay between the two so that they arrive in phase? Well, consider the
time delay Δ𝑡 = 𝑡1 − 𝑡2, or

Δ𝑡 =

[
1

𝑐1

𝑧 𝑓

sin 𝜃1
+ 𝑑

sin 𝜃1

(
1

𝑐2
− 1

𝑐1

)]
−

[
1

𝑐1

𝑧 𝑓

sin 𝜃2
+ 𝑑

sin 𝜃2

(
1

𝑐2
− 1

𝑐1

)]
(4)

With some algebra (see Sec. 4.1) gives

Δ𝑡 =

[
𝑧 𝑓

𝑐1
+ 𝑑

(
1

𝑐2
− 1

𝑐1

)] (
1

sin 𝜃1
− 1

sin 𝜃2

)
. (5)

In the case where the sources are equidistant, then the term in parentheses vanishes as ex-
pected. More generally, we can just draw a line along the path from the receiver to the desired
source position, and sum up the time it takes to get through each position

𝑡𝑖 =
∑

Δ𝑡𝑛 =
∑ 𝑠𝑖

𝑐𝑖
. (6)

†Obviously we’re making some big assumptions here. We’ll address this later.

4



Figure 5: Time delays (normalized by the period for a 2MHz source) for the
indicated layer thickness, as a function of the source position for a hard layer
(left) and soft layer (right).

Example 4: Limitations of Ray-based Focusing

What are we ignoring with this approach?
Ans: Reflection, refraction. Ray-approximation is valid for 𝑘𝑑 ≫ 1. Also assumes
layer is homogeneous.

What happens if Δ𝑡/𝑇 = 0.5?
The waves will cancel out! So need to be accurate with delays.

1.3 Including Refraction

Since the medium above and below are the same, the exit angle will be the same as the
entrance angle.† The ray will be refracted according to Snell’s law

sin
(
𝜋
2 − 𝜃𝑖

)
𝑐1

=
sin 𝜃ℓ
𝑐2

=⇒ sin 𝜃ℓ =
𝑐2
𝑐1

cos 𝜃𝑖 (7)

where 𝜃ℓ is the angle the ray makes with the normal in the layer (note that it is cosine due to
how we have defined 𝜃1). Its path length in the layer is then

𝑟layer,𝑖 =
𝑑

cos 𝜃ℓ
=

𝑑√
1 − sin2 𝜃ℓ

=
𝑑√

1 − (𝑐2/𝑐1)2 cos2 𝜃𝑖
. (8)

†Consider that Snell’s law says sin 𝜃1/𝑐1 = sin 𝜃2/𝑐2 and sin 𝜃2/𝑐2 = sin 𝜃3/𝑐3. Then since 𝑐1 = 𝑐3, it follows
that 𝜃1 = 𝜃3.
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Figure 6: Time delays (normalized by the period for a 2MHz source) for 5 to
40 mm layer thickness (as in Fig. 5), including refraction.

Compare with Eq. (2). Then, the total time is

𝑡𝑖 =
1

𝑐1

𝑧 𝑓

sin 𝜃𝑖
+ 𝑑√

1 − (𝑐2/𝑐1)2 cos2 𝜃𝑖

(
1

𝑐2
− 1

𝑐1

)
. (9)

Accounting for refraction muddies up the expressions. From Eq. (9), we see that we may now
have a critical angle for a hard layer (i.e., 𝑐2 > 𝑐1), in which case the wave will not go through
at all; see Fig. 6 where Δ𝑡 → −∞ since the second ray never arrives. But wait, the rays will
bend as they travel through the layer, so our distances will be thrown off right? Yes, so you
can appreciate the complexity of the problem (and hence why only small variances in ℓ are
shown in Fig. 6.

2 Spectral Method

The methods discussed in the model problem operate in the time domain. However, the ap-
proach2 used in clinical practice is an elaboration of the point technique, but its computations
are performed in the spatial frequency domain.

2.1 Linearity of the Wave Equation

The wave equation has the nice property that it is linear. To show this, recall that by definition,
an operator L is linear if and only if

L[𝛼 𝑓 + 𝛽𝑔] = 𝛼L[ 𝑓 ] + 𝛽L[𝑔] . (10)
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for any scalar constants 𝛼, 𝛽 ∈ ℝ. For the wave equation, L = (∇2 + 𝑐−20 𝜕2/𝜕𝑡2), so we have(
∇2 + 1

𝑐20

𝜕2

𝜕𝑡2

)
[𝛼 𝑓 + 𝛽𝑔] =

[
∇2 (𝛼 𝑓 ) + 1

𝑐20

𝜕2

𝜕𝑡2
(𝛼 𝑓 )

]
+

[
∇2 (𝛽𝑔) + 1

𝑐20

𝜕2

𝜕𝑡2
(𝛽𝑔)

]
= 𝛼

(
∇2 𝑓 + 1

𝑐20

𝜕2 𝑓

𝜕𝑡2

)
+ 𝛽

(
∇2𝑔 + 1

𝑐20

𝜕2𝑔

𝜕𝑡2

)
✓
= 𝛼L[ 𝑓 ] + 𝛽L[𝑔] . (11)

Now if 𝑓 and 𝑔 are solutions of the wave equation, then L[ 𝑓 ] = L[𝑔] = 0, and thus any linear
combination of 𝑓 and 𝑔 is also a solution. We will rely on linearity to justify out consideration
of single-frequency signals.

2.2 Temporal Frequency

Suppose our pressure time series has only one frequency, that is

𝑝(r, 𝑡) = 𝑝(r) · cos𝜔𝑡
= Re

[
𝑝(r) · 𝑒−𝑖𝜔𝑡

]
, (12)

where we’ve chosen the negative sign convention (see Sec. 4.2). From now on, we won’t write
Re everywhere; we’ll take it as implied that the pressure that we would measure is the real
part of the complex quantity 𝑝. Then the wave equation becomes

∇2 (
𝑝𝑒−𝑖𝜔𝑡

)
− 1

𝑐20

𝜕2

𝜕𝑡2
(
𝑝𝑒−𝑖𝜔𝑡

)
= 0

𝑒−𝑖𝜔𝑡∇2𝑝 − 1

𝑐20
𝑝
𝜕2

𝜕𝑡2
(
𝑒−𝑖𝜔𝑡

)
= 0[

∇2𝑝 − (−𝑖𝜔)2

𝑐20
𝑝

]
𝑒−𝑖𝜔𝑡 = 0 =⇒ ∇2𝑝 + 𝜔2

𝑐20
𝑝 =

(
∇2 + 𝑘2

)
𝑝 = 0 . (13)

Equation (13) is called the Helmholtz equation (and it’s also linear). This has the advantage
of now we only have a spatial derivative, instead of time and space derivatives like the full
wave equation. But, this only works for single frequencies, so why is this useful?

Recall the Fourier transform, which is defined

F [ · ] =
∫ ∞

−∞
( · ) 𝑒𝑖𝜔𝑡 d𝑡 . (14)

Qualitatively, it gives the amplitude and phase associated with each frequency 𝜔, such that if
we add up sine waves at each frequency with that amplitude and phase, we’ll get the original
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Figure 7: Plane wave and associated directional angles.

signal.

Now notice the Fourier transform is also linear. So, by solving the Helmholtz equation for
each frequency component, we can can solve it for arbitrary time series. We break up 𝑝(𝑡)
into its components, solve the Helmholtz equation instead, add up the component solutions
and take the inverse transform. Why go to all this trouble? To make the math easier!

2.3 Spatial Frequency

Now further suppose that our single frequency pressure field is a plane wave in 3D, which we
can write as write

𝑝(r) = 𝑝0 𝑒
𝑖k·r

= 𝑝0 𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧 𝑧) (15)

(note we’ll stop writing 𝑒−𝑖𝜔𝑡 since everything is proportional to it, so we’ll take it as implied
from now on). The wavenumber components 𝑘𝑖 define the angle with which the wave travels,
see Fig. 7. But for simplicity, consider a plane wave traveling along the 𝑥-direction, such that

𝑝 = 𝑝0 𝑒
𝑖𝑘𝑥 (16)

We say the field oscillates in time with frequency 𝜔 (i.e., 𝜔/2𝜋 times every second, the field
varies between ∥𝑝∥ and −∥𝑝∥ ). Similarly, we can say it varies in space with spatial frequency
1/𝜆. Just like with frequency, it’s convenient to define an angular frequency 2𝜋/𝜆. This is
called the wavenumber.

2.4 Wavenumber Decomposition

Similarly, we can think of the spatial distribution as varying Mathematically, it is the 2D
spatial transform of the signal

𝑃(𝑘𝑧, 𝑘𝑦, 𝑧) = F𝑘 [𝑝(𝑥, 𝑦, 𝑧)] ≡
∬ ∞

−∞
𝑝(𝑥, 𝑦, 𝑧) 𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) d𝑥 d𝑦 (17)
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Figure 8: Propagation through layers via rotation of the 𝑘 -space coordinate sys-
tem. After Fig. 1 of Ref. 2

So while the signal has one frequency in time, it can also be thought of as a summation of
plane waves traveling with different orientations. This field is called the “angular spectrum”
or “plane wave decomposition” and is employed for the same reason we look only at one
frequency at a time: it makes the math easier. The complex value 𝑃 is a function of the
wavenumber components 𝑘𝑥 and 𝑘𝑦. These components define the angle with which that
component

2.5 Propagation for Trans-skull Focusing

These plane waves have the nice property that they can be propagated through the layer by
a simple phase shift

𝑃 |𝑧+Δ𝑧 = 𝑃 |𝑧𝑒𝑖𝑘𝑧Δ𝑧 , (18)

where 𝑘2𝑧 = 𝜔2/𝑐2 − 𝑘2𝑥 − 𝑘2𝑦 . These plane waves are then rotated at each layered interface to
achieve normal incidence (see Fig. 8).

This method also has the advantage that amplitude changes can be included by multiplying
by the plane wave transmission coefficient

𝑇 =
2𝑍ac,2

𝑍ac,1 + 𝑍ac,2
, (19)

where 𝑍ac,𝑖 = 𝜌𝑖𝑐𝑖/cos 𝜃𝑖 is sometimes called the “acoustic impedance” of the medium (equal
to “characteristic” or “specific acoustic impedance” at normal incidence).
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Figure 9: Aberrated signals from a point source are conjugated in time to achieve
focusing at that position.

Example 5: Benefits and Limitations

What are the benefits of this approach?
Ans: Fast, can be be performed within minutes.

Limitations?
The method assumes the medium is layered, i.e., that the changes are discrete
and no in-plane variation. Also no reflections or mode conversion are accounted
for.

3 Time Reversal

Analytical methods are convenient because they are fast and relatively straightforward. How-
ever, they often make the assumption of a simplified environment (e.g., homogeneous, dis-
crete layers). How can you go about focusing through something like a skull, which is highly
heterogeneous? One way is time reversal.3

Time reversal relies on acoustic reciprocity (see Sec. 4.3), a formal consequence of which is that
we can switch the source and receiver positions and get the same result either way. So, if we
record the signals due to a point source, we can just turn all our receivers into sources, and
the field at the source will just be the point source. This process is illustrated in Fig. 9.

10



Example 6: Limitations of Time Reversal

Will we get a perfect focal point?
Ans: No—only receiving on finite aperture, so field will be diffracted.

Other problems?
Ans: How do we get a source in there? (We don’t; need to use simulation.)

11



4 For the Interested Reader

4.1 Simplification of Eq. (5)

Δ𝑡 =
1

𝑐1

𝑧 𝑓

sin 𝜃1
+ 𝑑

sin 𝜃1

(
𝑐1 − 𝑐2
𝑐1𝑐2

)
− 1

𝑐1

𝑧 𝑓

sin 𝜃2
− 𝑑

sin 𝜃2

(
𝑐1 − 𝑐2
𝑐1𝑐2

)
(

𝑐1𝑐2
𝑐1 − 𝑐2

)
Δ𝑡 =

(
𝑐1𝑐2

𝑐1 − 𝑐2

)
1

𝑐1

𝑧 𝑓

sin 𝜃1
+ 𝑑

sin 𝜃1
−

(
𝑐1𝑐2

𝑐1 − 𝑐2

)
1

𝑐1

𝑧 𝑓

sin 𝜃2
− 𝑑

sin 𝜃2

=

(
𝑐2

𝑐1 − 𝑐2

)
𝑧 𝑓

sin 𝜃1
+ 𝑑

sin 𝜃1
−

(
𝑐2

𝑐1 − 𝑐2

)
𝑧 𝑓

sin 𝜃2
− 𝑑

sin 𝜃2

=
1

sin 𝜃1

[(
𝑐2

𝑐1 − 𝑐2

)
𝑧 𝑓 + 𝑑

]
− 1

sin 𝜃2

[(
𝑐2

𝑐1 − 𝑐2

)
𝑧 𝑓 + 𝑑

]
𝑐1Δ𝑡 =

[
𝑧 𝑓 + 𝑑

(
𝑐1
𝑐2

− 1

)] (
1

sin 𝜃1
− 1

sin 𝜃2

)
Δ𝑡 =

[
𝑧 𝑓

𝑐1
+ 𝑑

(
1

𝑐2
− 1

𝑐1

)] (
1

sin 𝜃1
− 1

sin 𝜃2

)
. (20)

4.2 Sign Convention

Since 𝑒±𝑖𝑥 = cos 𝑥 ± 𝑖 sin 𝑥, and since we’re taking the real part, the choice of sign is arbitrary,
i.e., Re[𝑒𝑖𝑘𝑥] = Re[𝑒−𝑖𝑘𝑥]. But is not unimportant. The negative convention is used here, be-
cause then (in 1D) 𝑝 = 𝑝0𝑒

𝑖(𝑘𝑥−𝜔𝑡) describes a wave traveling in the positive 𝑥-direction, which
seems more natural to me (a positive convention means forward waves are proportional to
𝑒−𝑖𝑘𝑥).

The choice of sign also dictates the sign of the exponents in the Fourier transform kernels.
So for the forward time transform, the kernel is 𝑒+𝑖𝜔𝑡 , and for the forward spatial transform,
it’s 𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) . Either choice (positive or negative) is fine, but make it intentionally and stick
with it!

4.3 Reciprocity

A sketch of the proof of reciprocity is presented here; see Refs. 4,5 for more details. Consider
the identity ∫

𝑆
(𝜙1∇𝜙2 − 𝜙2∇𝜙1) · n d𝑆 =

∫
𝑉

(
𝜙1∇2𝜙2 − 𝜙2∇2𝜙1

)
d𝑉 , (21)

where 𝑆 = 𝜕𝑉 . Now let 𝜙1 and 𝜙2 be the velocity potentials due to two point sources in an
arbitrary volume 𝑉 , but with two small “cutouts” of radii 𝜖 around the two source positions
(see Fig. 10).
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Figure 10: Arbitrary volume with two source regions.

Nowwithin𝑉 , sine there are no sources (hence the cutouts) for a harmonic field,† ∇2𝜙 = −𝑘2𝜙,
so that the right hand side of Eq. (21) vanishes:∫

𝑆
(𝜙1∇𝜙2 − 𝜙2∇𝜙1) · n d𝑆 =

∫
𝑉

[
𝜙1

(
−𝑘2𝜙2

)
− 𝜙2

(
−𝑘2𝜙1

)]
d𝑉 = 0 . (22)

From the definition of the velocity potential

𝑝 = −𝑖𝜔𝜌0𝜙 and u = ∇𝜙 , (23)

so that the right side of Eq. (21) gives∫
𝑆

[(
𝑝1

−𝑖𝜔𝜌0

)
(u2) −

(
𝑝2

−𝑖𝜔𝜌0

)
(u1)

]
· n d𝑆 = 0

=⇒
∫
𝑆

(
𝑝1u2 − 𝑝2u1

)
· n d𝑆 = 0 . (24)

Equation (24) indicates that the field at position 2 due to source 1 is identical to the field at
position 1 due to source 2. It turns out that the principle is valid for heterogeneous media,
but not when losses are included.
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