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SUMMARY

Ultrasound has emerged as a novel modality for the treatment and imaging of brain

diseases. When enhanced by circulating microbubble agents, which scatter sound and

vibrate in response to the incident ultrasound, it can enable a range of new therapeu-

tic interventions and open new possibilities for imaging. Despite these advancements,

the skull remains a major challenge both for therapy and imaging. This work pro-

poses methods for fast, frequency-selective passive reconstruction of the acoustic field

through human skull with applications including improved targeting for exploitation

of nonlinear acoustic e�ects in the brain, controlling the microbubble dynamics, and

super-resolution imaging.

—Robert Hooke, Posthumous Works (1705)

xv



Chapter 1

Introduction and Background

The use of ultrasound as a medical imaging modality has become nearly ubiquitous

in the last half-century, largely due to its large tissue penetration depth, low cost,

and use of non-ionizing radiation.1 More recent work has also demonstrated the util-

ity of higher intensity ultrasonic fields for therapy, exploiting mechanisms as ther-

mal ablation,2 shock-wave pulverization,3,4 and cavitation-aided liquefaction.5 While

ultrasound-mediated imaging and therapeutic techniques have seen broad clinical

adoption, their use toward diagnosis and treatment of central nervous system dis-

eases is significantly more limited due to the brain’s robust and relatively impervious-

to-sound encasement: the skull.

Through significant technological advancement in the last two decades, use of fo-

cused ultrasound (FUS) has enabled successful pilot studies toward the treatment of

central nervous system diseases in humans.6 Some techniques exploit controlled de-

position of thermal energy,7–11 while in others, stabilized microbubble contrast agents

are used to induce localized mechanical forces to disrupt temporarily the blood-brain-

barrier (BBB) with the aim of improving delivery and uptake of therapeutics.12–14

Moreover, with current methods for corrected focusing through the skull, only a small

part at the center of the brain can be treated. Hence di�erent aberration correction

methods that will potentially allow to expand the treatment envelope of current FUS

systems are urgently needed in order to utilize the potential of this technology to

the treatment of brain diseases. Additionally, to ensure treatment safety and e�cacy,

monitoring and control of the acoustic field is paramount.

Extant active acoustic imaging methods are largely ine�ective for trans-skull appli-

cations: the impedance contrast presented by the skull has required workarounds such

as thinning of the bone;15 restriction to only the thinnest region of the skull (temporal

window);16 craniectomy to create an acoustic window;17 or use in infants whose skulls

are not fully formed.18 Passive (i.e., listen-only) acoustic mapping methods have, at

the cost of degraded resolution, demonstrated successful imaging through the skull.

1



However, current approaches19,20 are computationally expensive, and have yet to be

demonstrated with su�cient speed for real-time imaging, a necessity for therapeutic

guidance. Therefore, e�cient methods for imaging of the acoustic field through the

skull are needed.

Addressing these challenges requires considered manipulation of ultrasound in

the highly heterogeneous and complex acoustic environment represented by the skull.

Thus, the immediate task is to understand and predict the propagation of these pres-

sure waves. While full-waveform modeling21–23 has made great strides in recent years,

the size of the skull (∼10 cm) is very large compared to the wavelength at the mega-

hertz frequencies of interest (∼1 mm). Thus representing the full geometry with sim-

ulation the requisite grid sizes—especially for realistic 3D environments—becomes

intractable without recourse to specialized computing resources. Spectral approaches

have been proposed to enable fast prediction24 and reconstruction25 of the acoustic

field, but their derivations assume a homogeneous medium.

The central innovation of this work is extension of the frequency domain angular

spectrum approach to account for heterogeneity of the medium—i.e., the presence

of the skull in the region of interest. Following the derivation of the heterogeneous

angular spectrum approach in Chap. 2, several applications to existing challenges

in brain imaging and therapy are explored. Specifically, first the improvements en-

abled for focusing (Chap. 3) and passive acoustic mapping (Chap. 4) are evaluated.

Next, given the relatively low resolution of passive maps, complementary methods

based on recent techniques for improving the e�ective resolution are investigated

(Chap. 5). Finally the feasibility of the improved focusing method is discussed to-

ward targeted, low-frequency applications through exploitation of nonlinear acoustic

phenomena (Chap. 6).
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Chapter 2

The Heterogeneous Angular Spectrum Approach

2.1 Introduction

Most generally, the angular spectrum approach (ASA) is a method of solving the wave

equation in the spatial frequency domain.26 It may be considered a decomposition of

the harmonic field† into plane waves that travel with a continuous spectrum of direc-

tions, with appropriate phases and amplitudes such that their summation yields fields

of arbitrary spatial distribution.27 Plane waves are mathematically convenient, as the

propagation through space of each component may be modeled with a simple phase

delay. Coupled with fast Fourier transform (FFT) algorithms,28 the method enables

exceptionally e�cient computations and is naturally suited to real-time applications.

In addition to generating specific field patterns, of particular interest for the ASA here

is the recovery of the volumetric wave field from a surface measurement of the phase

field (i.e., boundary condition), a process known as holography.29

However a major limitation of the ASA for biomedical acoustics is the assumption

of a homogeneous medium. While the method is relatively robust to weak heterogene-

ity (density and compressibility changes on the order of a few percent) its performance

in more complex environments, including that represented by the intervening skull,

su�ers from distortion caused by significant refraction and attenuation of the acoustic

energy—e�ects not accounted for in its formulation.

In this chapter, a governing equation for the ASA in a heterogeneous medium

is derived, and solutions are presented with general numerical algorithm, and an

analytical result valid for a stratified medium. To prevent distraction from the through

line of the derivations, the bulk of the evaluations and low-level details have been

relegated to Appendix A; see there for full details.

†For linear acoustic propagation, the restriction to a single frequency does not sacrifice generality, as
arbitrary finite duration time series may be written as summation of their Fourier series.
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2.2 Canonical Formulation

Notation Convention Throughout this thesis, a negative time convention is used.

That is, a harmonic function f (t) = f0 cosωt will be written f (t) = f0e−iωt , where the

real part of f is to be taken implicitly. The choice is arbitrary, but dictates the sign of

the kernel in the temporal and spatial Fourier transform pairs. Thus herein

F[ · ] ≡
∫ ∞

−∞

( · )eiωt dt (2.2.1)

Fk[ · ] ≡

∬ ∞

−∞

( · )e−i(kx x+ky y) dx dy (2.2.2)

Results for the positive time convention ∝ exp+ jωt can be obtained from the pre-

sented results via the substitution i → − j.

The acoustic pressure p of interest is taken to be governed by the homogeneous

wave equation†

∇2p −
1

c2
0

∂2p
∂t2
= 0 , (2.2.3)

where c0 is the (constant) small-signal sound speed. Since linear propagation is as-

sumed, it is su�cient to consider a single frequency pressure wave, as arbitrary time

series signals may be assembled from these harmonic components. Taking the tem-

poral Fourier transform of Eq. (2.2.3) and use of the fact that F[∂2p/∂t2] = −ω2 p̃ ‡

gives the homogeneous Helmholtz equation

(∇2 + k2)p̃ = 0 , (2.2.4)

where p̃ = F[ p ] and k ≡ ω/c0 is the wavenumber. The ASA is derived by applying

†Equation (2.2.3) is valid for small-signal (linear) pressure waves in a lossless, inviscid, homogeneous
medium. This chapter specifically address the latter requirement; restrictions imposed by the other
assumptions are discussed in Sec. 2.7.
‡Note that p may be written as the inverse transform

p = F−1[ p̃ ] = 1

2π

∫ ∞

−∞

p̃ e−iωt dω ,

so that

∂p
∂t
=
∂

∂t

[
1

2π

∫ ∞

−∞

p̃ e−iωt dω

]
=

1

2π

∫ ∞

−∞

−iωp̃ e−iωt dω = F−1[ −iωp̃ ] .

Taking the forward transform of this expression gives F[∂p/∂t] = −iωp̃, i.e., that time derivatives of
p become multiplications by −iω in the frequency domain.
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Figure 2.1: (a) Geometric interpretation of the wavenumber directional
components. (b) Propgation of the field via multiplication by a transfer func-
tion in the spatial frequency domain.

the spatial Fourier transform Fk to to yield an ordinary di�erential equation for its

angular spectrum P(kx, ky, z) = Fk[ p̃ ]

d2P
dz2
+ k2

z P = 0 , (2.2.5)

where k2
z = (ω/c0)

2 − k2
x − k2

y .

By application of the temporal and spatial transforms, the multivariate partial

di�erential wave equation [Eq. (2.2.3)] has been transformed to an ordinary di�erential

equation in z [Eq. (2.2.5)]. Note however that there is no computational advantage to

this transformation in principle; while Eq. (2.2.5) is simpler to solve, a solution must

be found for all temporal frequencies ω and for each set of spatial frequencies (kx, ky)

corresponding to that frequency, and then their inverse transforms superimposed.

However, in many applications, only a small band of frequencies are of interest and

thus only a small subset of the data must be processed. This reduction comes at the

cost of performing a Fourier transform of the data, but the ready availability of fast

Fourier transform (FFT) implementations makes this an attractive trade-o�.

The term “angular spectrum” is used since the transformation from p̃ to P is

mathematically equivalent to writing the field as a continuous distribution of plane

waves with a spectrum of wavenumbers (kx, ky). From the identity (ω/c)2 = k2
x+k2

y+k2
z ,

each of these wavenumbers are associated with an angle, which describe the direction

of propagation of the plane wave component, i.e., cos θi = ki/k0 as shown in Fig. 2.1(a).

Plane waves are exceptionally convenient mathematically, as their value at any point

in space can be found via a simple phase shift k · r , where k ≡ kxex+kyey+kzez. Thus,

if the pressure field is measured at some reference plane z = 0 (i.e., at the transducer

face), and its angular spectrum at that plane P0 = P(kx, ky,0) is computed. If there
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are no backward-travelling waves, then Eq. (2.2.5) has the solution

P = P0 eikz z . (2.2.6)

The full acoustic field in any plane may then be reconstructed with Eq. (2.2.6) and

evaluation of the inverse transform.

The e�ciency of the ASA toward biomedical ultrasound applications compared

to, e.g., delay-and-sum beamforming methods (see Chap. 4) lies in the fact that the

shift and sum operation represents a convolution that is converted to a multiplication

in the frequency domain. Additionally, the spectral selectivity means that only the

frequencies of interest need be manipulated, rather than the entire time series for

every receiver channel.

2.3 General Heterogeneity

Equation (2.2.6) is derived in the case that c0 is a constant material property. In

the case that the sound speed c(r) changes slowly compared with the wavelength,†

propagation may be described by [∇2+ω2/c2(r)]p̃ = 0. Then application of the spatial

transform yields

d2P
dz2
+ k2

z P = Λ ∗ P . (2.3.1)

In Eq. (2.3.1), Λ = Fk
[
k2

0(1 − µ)
]
, k0 = ω/c0, µ = c2

0/c
2, c0 is a reference (average)

sound speed, and ∗ denotes a 2D convolution over the wavenumber components kx

and ky. Comparing with Eq. (2.2.5), the heterogeneity appears as a source term in the

governing equation. In the general case, the implicit solution of Eq. (2.3.1) may be ob-

tained with a Green’s function technique30–32 to give, for the same source conditions,

P = P0eikz z +
eikz z

2ikz

∫ z

0
e−ikz z′ (Λ ∗ P) dz′ . (2.3.2)

†The specific requirement is that |∇ρ/ρ + 2∇c/c |(ω/c) � 1; see Appendix B.1. Thus while strictly it
is independently required that the density varies slowly, the density and sound speed are intrinsically
related through c20 = K/ρ0, where K is the bulk modulus of the fluid.
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While Eq. (2.3.2) remains implicit, approximation of the integral with a first order

Riemann sum may then be used to compute P at arbitrary z via

Pn+1 ≈ Pneikz∆z +
eikz∆z

2ikz
(Pn ∗ Λ) × ∆z , (2.3.3)

where Pn = P(kx, ky,n∆z). The use of the first-order approximation to replace the inte-

gral imposes restrictions on the choice of step size ∆z. Fundamentally, it is governed

by the gradient of the medium heterogeneity with respect to the wavelength. A more

detailed consideration is given in Appendix A.3.1, but as a general rule use of ∆z less

than 1/6 of the wavelength will give reasonable results.

2.4 Strati�ed Heterogeneity

In the special case of a stratified medium, i.e., one whose sound speed is a function

only of the axial coordinate z, then the convolution in Eq. (2.3.1) may be evaluated33,34

to give

∂2P
∂z2
+ k2

z P − λ P = 0 , (2.4.1)

where λ = F−1
k [Λ] = k2

0(1 − µ). Assuming a solution of the form P = A(kx, ky, z) eikz z

(WKB method35), and retaining only first-order terms† the solution for the angular

spectrum is then

P = P0 exp

[
i

(
kzz −

k2
0

2kz

∫ z

0
1 − µ(z′) dz′

)]
. (2.4.2)

Note that for a homogeneous medium, then µ = 1, and the uniform case [Eq. (2.2.6)]

is recovered.

2.5 Comparison of Results

Reference 36 presents a general forward simulation scheme that includes nonlinearity

and attenuation. In the absence of these e�ects, Eq. (12) of that reference becomes

†Discarding the second derivative term specifically requires that |(k2
0/k

2
z )(1 − µ)| � 1; see Ap-

pendix A.3.2. Thus for k0 ∼ kz (paraxial approximation), this requirement is that µ ≡ (1 + c′/c0)−2 '
1 − 2c′/c0 ∼ 1, i.e., that the relative magnitude of the sound speed changes should be small. Thus the
stratified correction is more restrictive than the general case, as it is valid when the speed of sound
changes are both gradual and small. The general case requires only the former condition.
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(with the present notation)

M = Fk

{[
k2

0

(
1 − c2

0/c
2
)]
× p̃

}
= Λ ∗ P . (2.5.1)

Substitution of this M into Eq. (11) of Ref. 36 recovers Eq. (2.3.2) obtained here,

indicating the consistency of the results.

To compare the stratified result with the general case Eq. (2.3.3), rewrite Eq. (2.4.2)

as

P = P0eikz z exp

[
1

2ikz

∫ z

0
λ(z′) dz′

]
. (2.5.2)

Expansion of the exponential term (justified below) gives

P ' P0eikz z
[
1 +

1

2ikz

∫ z

0
λ(z′) dz′ + . . .

]
. (2.5.3)

Retention of first order terms and approximation the integral as a left Riemann sum

gives

Pn+1 ' Pneikz∆z +
eikz∆z

2ikz
Pnλ(z)∆z +O

[
(∆z)2

]
. (2.5.4)

In the stratified medium case, Λ∗P = λP, so that Eq. (2.3.3) agrees with Eq. (2.5.4) to

O
[
(∆z)2

]
—which is the expected result as it is the first order solution of Eq. (2.4.1).

Use of the truncated expansion in Eq. (2.5.3) requires that

1

4

(
k0

kz

)2 [
k0

∫ z

0
(1 − µ) dz

]2

� 1 . (2.5.5)

In the far field (the region of interest for most biomedical applications), the paraxial

approximation dictates that first term is of order 1. Equation (2.5.5) is true then if

µ ≈ 1, i.e., for relatively weak inhomogeneity—which is the condition under which the

wave equation with c→ c(r) is valid.37
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Figure 2.2: (a) The first term in the phase correction described by
Eq. (2.5.8) is due to the dilation or contraction of the wavelength due to
the change in sound speed c. (b) The second term in Eq. (2.5.8) accounts
for the distance d between z values for the plane wave component having
an orientation defined by kz .

2.5.1 Interpretation of Results

By inspection, Eq. (2.4.2) represents a phase delay φ to the homogeneous medium

case of

φ =
k2

0

2kz

∫ z

0
1 − µ(z′) dz′ . (2.5.6)

Equation (2.5.6) may be thought of as accumulation of phase shifts incurred as the

wave travels through an infinitesimal width dz, i.e., φ =
∫

dφ, such that

dφ = (k2
0/2kz) (1 − µ) dz . (2.5.7)

Since Eq. (2.4.2) required that c′/c0 is small, µ(z) ≡ (1 + c′/c0)
−2 can be expanded so

that

dφ '
k2

0

2kz

[
1 −

(
1 − 2

c′

c0

)]
dz

'
k2

0

2kz

(
2

c′

c0

)
dz =

(
c′

c0
k0

) (
k0

kz
dz

)
. (2.5.8)

The term (c′/c0)k0 has the form of an e�ective wavenumber, accounting for the di-

lation or contraction of the wavelength due to the di�erence in sound speed from c0

[Fig. 2.2(a)]. The second term (k0/kz) dz is the distance between the two infinitesi-

mally separated planes for a plane wave traveling with propagating wavenumber kz.

The extra phase then assumes the familiar form φ ∼ keff d, see Fig. 2.2(b). With these

solutions for the ASA in heterogeneous media in hand, their application to problems in

trans-skull ultrasound are now considered; namely e�cient focusing to correct for dis-
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tortions induced by the skull; passive beamforming for source localization accounting

for aberration induced by the same; improving the e�ective resolution of the obtained

images of the vasculature; and evaluating the feasibility of nonlinear acoustic e�ects

in the brain.

2.6 E�ects of Discretization

Before considering applications of the theory, some practical details of its implementa-

tion should be addressed. The formulation of the ASA and HASA in this chapter has

thus far assumed that the full, continuous pressure field is known at every point in the

z = 0 plane for all time. However, in any practical application, the field is discretely

sampled in time (digital conversion) at a finite number of receiver positions (due to

the limited spatial extent of the transducer and the discrete positions of each element).

The e�ects of temporal discretization are perhaps more familiar, and for which

the Shannon-Nyquist† theorem39,40 states that accurate reconstruction of a discretely

sampled function requires the continuous signal to be sampled at a rate at least twice

that of the highest frequency contained in the signal for accurate reconstruction from

its Fourier series. The spatial analog is a consequence of the same theory; namely that

reconstruction of a spatial signal with highest spatial frequencies kx and ky, must be

sampled at intervals ∆x and ∆y that satisfy41

∆x ≤
π

|kx |
and ∆y ≤

π

|ky |
. (2.6.1)

Equivalently, this requirement is that field is sampled at least twice per wavelength,

since |kx | ≤ |k | = 2π/λ. Note however that this statement represents a lower bound

on the sampling (i.e., any field with wavelength λ may be reconstructed with this

sampling). But, for the transverse components of the wavenumber kx, ky ∝ k0 sin(θ),

where θ is the azumuthal angle; thus if the received wavefronts are approximately

normal to the receiver plane, then these wavenumbers will be appreciably smaller than

†The conventional name is used here, though as noted by Ref. 38, the naming convention rarely captures
the nuance of its development:

The numerous di�erent names to which the sampling theorem is attributed in the literature—
Shannon, Nyquist, Kotelnikov, Whittaker, to Someya—gave rise to [. . . ] discussion of its origins.
However, this history also reveals a process which is often apparent in theoretical problems in
technology or physics: �rst the practicians put forward a rule of thumb, then the theoreticians
develop the general solution, and �nally someone discovers that the mathematicians have long
since solved the mathematical problem which it contains, but in “splendid isolation.”

10



k0, and the spatial variation of the field will be appreciably larger than λ. Therefore,

spatial sampling of the field may be coarser than two samples per wavelength, at the

cost of reduced angular resolution.

The separate issue of a spatially finite sampling of the field must also be considered.

Mathematically, the e�ect of a measurement by an aperture of length L may be seen

by application of a window function (i.e., rect(x), defined to be unity for |x | < 1 and

0 otherwise) to the full field. In 1D, this becomes

P0 = Fk

[
rect

( x
L

)
· p̃(x)

]
= P ∗ L sinc

kx L
2

. (2.6.2)

When kx L . 1 the aperture has the e�ect of introducing spatial frequencies not

present in the true signal.† This e�ect can be mitigated with the use of zero padding.

That is, L may be made arbitrarily large by assuming the field vanishes everywhere

outside the aperture, i.e., computationally appending 0s to the measured data; see

Fig. 2.3(a). Qualitatively, this approximation requires that any sources of interest lie

squarely within view of the aperture.

Some care must be taken in the padding, since assumption of a vanishing field

for |x | > L/2 may introduce sharp changes in the boundary condition. Represent-

ing this field in the spatial frequency domain requires very high spatial frequencies,

whose propagation may introduce significant errors in the reconstructed field. Mathe-

matically, these e�ects are identical to spectral leakage due a rectangular apodization

function in time series analysis. To avoid such artifacts, the measured data are win-

dowed, such the pressure amplitudes decay smoothly to 0 at the ends of the aperture.

A Tukey window is typical for applications,41,42 namely,

W(x) =


1
2

{
1 + cos

[
2π
ξL

(
x + 1−ξ

2

)]}
x ∈

[
− L/2, L(ξ − 1)/2

)
1 x ∈

[
L(ξ − 1)/2, L(ξ + 1)/2

]
1
2

{
1 + cos

[
2π
ξL

(
x − 1−ξ

2

)]}
x ∈

(
L(ξ + 1)/2, L

] , (2.6.3)

where ξ is a parameter representing the fraction of L over which a cosine taper is

applied. For ξ = 0, Eq. (2.6.3) gives a rectangular window, while for ξ = 1 gives

a cosine window, see Fig. 2.3(b). With these concerns in mind, for all results that

employ the ASA or HASA presented herein, the following processing steps have been

applied in the numerical implementation

†Conversely, note that as L → ∞, the second term approaches a delta function L sinc kxL
2 → δ(kx).

And since P ∗ δ(kx) = P, an infinite aperture recovers the continuous result,
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Figure 2.3: (a) Schematic of computational domain for reconstructions
and e�ect of windowing. (b) Tukey window functions [given by Eq. (2.6.3)]
for the indicated values of ξ.

1. Measured data have been zero padded such that the size of the padded aperture

is four times the width of the physical aperture [Fig. 2.3(a)].

2. A Tukey window with ξ = 0.25 was applied to the measured data.

Thus while for simplicity P0 is taken to mean Fk [p̃(x, y,0)], it is strictly the padded,

apodized version given by Eq. (2.6.2). The stated conditions are not necessarily opti-

mal for all cases, but represent a reasonable values to limit the number of variables

for di�erent applications, and were seen to give reasonable results for axial distances

on the order of the array aperture (i.e., for z ∼ L).

2.7 Summary of Contributions

Presented in this chapter were two results that enable extension of the fast, frequency

domain angular spectrum approach to account for propagation in heterogeneous me-

dia. The first, given by Eq. (2.3.3) is a numerical approach that marches in the axial

direction z and accounts for arbitrary spatial variation of the sound speed c0, pro-

vided these variations occur over scales that are large with respect to the wavelength.

The second, Eq. (2.4.2), is an analytical correction to the phase of the angular spec-

trum, and is valid when the sound speed varies only in the direction perpendicular

to the initial condition, and when the magnitude of these changes are small (i.e.,

|(c − c0)/c0 | � 1). Coupled with considerations for their practical implementation

(Sec. 2.6), these techniques may now be evaluated for applications in several aspects

of trans-skull ultrasound.
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Chapter 3

E�cient Transcranial Focusing

3.1 Introduction

The use of focused ultrasound to manipulate brain tissue through the skull acoustically

is of significant clinical interest. The potential of focused ultrasound to create isolated

regions of high temperature or mechanical force noninvasively was realized nearly a

century ago;43,44 however its use for applications in brain diseases has been stymied by

the skull e�ects: namely the reflection, refraction, and absorption of acoustic energy.45

Early approaches for FUS in the brain used a single or a few radiating piezoelectric

elements, and required removal of portions the skull near the treatment area.46–48

While single element, trans-skull focusing was demonstrated49,50 skin burns51 and

skull heating due to acoustic absorption52 prevented clinical adoption. In addition

to absorption, aberration caused by distortions of the field due to the skull, cause

a loss of coherence and a shifted or weakened focal region,53 a problem that also

complicates trans-skull mapping (see Chap. 4). In this chapter, current challenges

for fast calculation of focal corrections to handle the skull are introduced, and the

HASA developed in the previous chapter is evaluated for its ability to compute these

corrections e�ciently.

3.1.1 Transcranial FUS Therapy

Advances in transducer technology eventually enabled construction of arrays of indi-

vidual elements whose phases could be controlled independently, leading to methods

to correct for skull aberrations.54–56 While these corrections nominally required inva-

sive measurement,55 the use of MRI or CT for image guidance53,57–59 allowed these

corrections via simulation.60 Subsequently, hemispherical arrays,61–63 whereby tens to

hundreds of individual elements are arranged concentrically with diameters of about

30 cm, were developed. These arrays distribute the transducers over a large area, so as

to reduce skull heating, and allow implementation methods to correct aberrations, and
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thus provided the basis for the first clinical uses.7 Currently, these systems are in use

to treat essential tremor,9,64 and chronic pain,8,65,66 while ongoing work is evaluating

its use in treating Alzheimer’s disease,14 depression,67,68 and Parkinson’s disease.69

While great strides have been made to date, hemispherical arrays are limited to the

central region of the brain for thermal ablation, necessitate liquid cooling of the skull,

and require expensive MRI guidance.70,71 Single element techniques have also found

uses at lower intensities for neuromodulation72 and BBB disruption with intracranial

implants12 in humans. Additionally, recent novel fabrication techniques have enabled

realization of transducers for imaging72–75 and therapy76–78 hold promise for further

innovation and enabling of US guidance. Many of these applications take advantage

of recent developments in microbubble contrast agent technology, which enable fur-

ther enhancement and localization of the mechanical and thermal e�ects of FUS.79

However, to enable adaptive focusing at the periphery of the brain and at shorter

timescales, e�cient accurate methods for transcranial focusing are needed.

In this chapter, the heterogeneous angular spectrum approach from Chap. 2 is

applied to trans-skull focusing. First, phase and amplitude shadings are extracted from

the field predicted with HASA. Then, with numerical simulations, the improvement in

focal accuracy, intensity, and distributions are evaluated as functions of array aperture,

and frequency. Finally, the e�ciency of the focusing technique is considered.

3.2 Theory and Methods

3.2.1 Focusing in With Phased Arrays

Phased arrays allow independent control of individual elements of the transducer, and

thus the ability to steer and focus the resulting field. For the case of a homogeneous

medium with speed of sound c0, the distance from each element n to the target focus

position (x f , z f ) is

n =
√
(xn − x f )

2 + z2
f , (3.2.1)

since the array is taken to be aligned with z = 0 (see Fig. 3.1). Thus, if the identical

transmitted signals for each element n are delayed in time by

τn =
n

c0
, (3.2.2)
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Figure 3.1: (a) For a desired focal target (x f , z f ), the travel time from each
element n may be calculated. (b) Delaying the transmitted signals from each
element by the appropriate delay allows (c) coherent, constructive interfer-
ence at the desired focal point.

then the emissions will line up at the focus, resulting in constructive interference and

high amplitude [see Fig. 3.1].

However, in the case where c0 varies in space, Eq. (3.2.2) is no longer valid. A

straightforward correction computes the travel time over the ray from the element to

the focal point

τn =

∫
`n

ds
c(r)

, (3.2.3)

where c(r) is the spatially-varying sound speed, and `n is the line segment between ele-

ment n and the focus. Equation (3.2.3) is equivalent to finding an e�ective sound speed

ceff for each path, and computing the delay τn = n/ceff,n. This technique however has

two central deficiencies: the first is that di�raction is not considered. A changing

medium will result in di�raction such that the path `n is no longer a line, and so the

travel time must be computed, e.g., with ray theory.80 The second is computational

expense; the integral Eq. (3.2.3) must be evaluated for every focal target and every

array element. While parallelizable, this operation is inherently intensive and thus a

more e�cient method is desirable.

Another approach posits that, rather than computing the traversal time over all

paths from each element to the target focus (which ignores, e.g., multiple scattering)

the delays might be measured. The process of time reversal81,82 invokes acoustic reci-
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Figure 3.2: In time reversal, (a) signals due a point source are measured
(or recovered from a full simulation). (b) Reversing these time series sig-
nals allows focusing at the original source location. Adapted from Fig. 5 of
Ref. 81.

procity:† a consequence of which is that the measured field will be identical under

exchange of the source and receiver. Thus, if the signals at the transmitter locations

due to a point source at the target are known, they can then be reversed in time‡ to

achieve trans-skull focusing on transmit (see Fig. 3.2). Thus the problem of focusing

in a complex medium may be addressed by determining the amplitude changes and

phase delays at each element due to a point source at the target.

While robust and conceptually simple, determination of these time-domain signals

is non-trivial in trans-skull contexts. These phase and amplitude modulations may be

determined experimentally via measurement of the field due to an induced cavitation

source at the target location inside the skull;79,84–86 however, cavitation events in the

brain are not always desirable, and the relatively high cavitation threshold requires

additional corrections or high power arrays.87 Use of corrections based on analysis of

time domain signals measured from contrast agent microbubble emissions has been

demonstrated,88 though the location of these cavitation events cannot be controlled

precisely. Alternatively, a point source can be placed within the skull to enable e�ective

trans-skull therapy;55,89–91 however this technique requires invasive placement at the

target, which is not possible in realistic scenarios. For these reasons, several simulation

techniques have been proposed for aberration correction, including finite di�erence

time domain (FDTD)60,92 and k-space propagation models.7,62,93 In these methods,

†While a powerful fundamental result, acoustic reciprocity holds strictly only for linear, lossless propa-
gation. While the former restriction is a reasonable approximation for trans-skull applications, losses
present a more relevant challenge83 for this method and require more sophisticated time-reversal pro-
cesses with amplitude correction.55
‡The term “conjugated” is sometimes used, since the complex conjugate of the frequency domain
pressure is equivalent to reversing the time domain signal: F−1[p̃∗] = p(r,−t).
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Target

Figure 3.3: Illustrative calculation of focal delays. (a) Focal delays and
amplitude shading are calculated from the magnitude and phase of the field
projected from an initial point source at the target location. This field is
calculated with the HASA algorithm Eq. (2.3.3). (b) While the phase of the
computed distribution at the receiver is bounded by 2π [i.e., ei(φ+2π) = eiφ],
these values must be distinguished for finite signals.

the simulation of the acoustic propagation due to a point source inside the brain is

used to estimate the required phases for aberration correction. While these methods

can be very precise, as they may account for a broad range of physical e�ects including,

e.g., mode conversion, viscosity and nonlinearity, there exists a fundamental trade-o�

between their accuracy and required computational complexity.94

The ASA has been applied to this problem with step-wise locally homogeneous

approximations.62,95 While these methods o�er improved e�ciency to full simula-

tion methods, current implementations require field transformations at each step,95–97

whereas the heterogeneous ASA developed in Chap. 2 does not. Thus, it is next consid-

ered if the HASA may be applied to compute the requisite parameters for trans-skull

focusing in a highly e�cient manner.

3.2.2 Correcting Focal Aberration with HASA

The HASA allows the focal delays to be calculated as a function of space to enable

focusing through heterogeneous media. Consider that a perfect focal point may be

presented as a delta function at the target location r0

p̃0 = δ(r − r0) . (3.2.4)

If this spatial impulse is taken as the source condition, propagation of this field to the

transducer location r′ with Eq. (2.3.3) [or Eq. (2.4.2) in the case of a stratified medium]

will yield the phase and amplitude of the distorted field. Then the appropriate shading
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| p̃(r′)| and crucially time delays

τ =
arg

{
F−1

k

[
P(kx, ky, z′)

] }
ω

(3.2.5)

may be applied to each element to generate a focal spot through the complex medium;

see Fig. 3.3(a). Strictly, Eq. (3.2.5) must be evaluated for each frequency in the trans-

mitted signal’s bandwidth, and the shifted sine waves superimposed. However in prac-

tice, the delay is calculated only for the center frequency ω0. Thus, for a relatively nar-

row bandwidth (fractional bandwidth .0.1), the transmitted signal from a transducer

at r′ would be given by

s(r′, t) = w(t) ·
��p̃(r′,ω0)

�� cosω0[t − τ(r′)] , (3.2.6)

where τ(r′) is given by Eq. (3.2.5), and p̃ = F−1
k [P]. Here also, w(t) is a window

function, chosen to be a Tukey window [Eq. (2.6.3)] with width L chosen to be 40

cycles at ω0, and cosine fraction ξ = 0.1.

Importantly, in the case of finite duration signals, the di�erence between the total

phase and the wrapped (or principal phase Arg p̃) must be made, as the time delays

are not equivalent mod 2π/ω

arg p̃ = Arg p̃ + 2πn ; (3.2.7)

see Fig. 3.3(b). Thus a simple phase unwrapping, whereby large jumps in the phase are

replaced by successive additions of 2π is used. While in some applications noisy phase

variations can make accurate unwrapping more challenging,98 the focusing problem,

which requires evaluation of Eq. (3.2.5) rather than experimental measurement, is

fortunately not subject to measurement noise.

3.2.3 Simulations

Simulations of trans-skull focusing were performed in the open-source ultrasound sim-

ulation toolbox k-Wave23 with linear compressional behavior considered. To create a

realistic acoustic environment, the sound speed, density, and attenuation were defined

from clinical CT data of a human skull using a semi-empirical relationship to relate

the Hounsfield unit H (a normalized intensity value for the specific CT image) to the
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Figure 3.4: Data processing pipeline. The raw CT data files are read in
from DICOM format to (single-precision) MATLAB values, which may then
be interpolated to the desired grid spacing and assigned material properties,
as with Eqs. (3.2.9) to (3.2.11)

density and speed of sound in the skull;21 see Fig. 3.4 Defining the porosity

Ψ = 1 − H/1000 , (3.2.8)

the sound speed, density ρb, and attenuation of the skull were defined to be

c = Ψcw + (1 − Ψ) cb (3.2.9)

ρ = Ψρw + (1 − Ψ) ρb (3.2.10)

α = αmin + (αmax − αmin)Ψ
γ , (3.2.11)

where the b and w represent the maximum values of pure water and solid bone,

respectively; these values were taken to be cb = 2500 m/s and ρb = 2000 kg/m3. The

implementation of k-Wave enables a spatially dependent attenuation coe�cient α to

model power law absorption, that is

α = α0 · f β (3.2.12)

where f is the frequency in megahertz. As the exponential dependence must be uni-

form for the entire grid, an average value of β = 1.2 was used.99 A time step of 40 ns

and spatial grid size of ∆x = ∆y = 200 µm were used (CFL number 0.44) to ensure

stability of the simulations.

Additionally, much as the sharp transitions in the measured spatial distribution p̃0

due to the finite aperture may lead to the artificial introduction of very high spatial

frequencies (Sec. 2.6), similar e�ects were observed for numerical delta functions (i.e.,

a binary source mask equal to unity only at the point of the target focus). Instead, a

smoother cosine window (i.e., Tukey window with fractional width L = 7 grid points
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Figure 3.5: Geometry for trans-skull focusing simulations. Focal Targets
were defined 40mm to 60mm from the array axially and ±15mm trans-
versely from the axis. Focal errors and amplitudes were then evaluated for
each as a function of array aperture and frequency.

ξ = 1) was centered at the target location and this was used as the source condition.

3.3 Results

The results of the trans-skull simulation for various frequencies, with and without the

correction are shown in Fig. 3.6, compared with the pure water case. The improvement

o�ered with HASA–computed delays depends on the aperture, frequency, focal target,

and array position. In the following sections, the e�ect of the correction of the focal

accuracy, amplitude, and area are evaluated.

3.3.1 Focal Spot Accuracy

First, the e�ect of the phase correction on transmit focal accuracy for various focal

targets as a function of frequency was evaluated (Fig. 3.7). For each of the five tar-

get focal positions shown in Fig. 3.5, the focal delays were computed geometrically

with Eq. (3.2.2) and then with corrections given by Eqs. (2.3.3) and (3.2.5). Then, the

position of peak pressure for the resulting field was compared with the target focal

position, and the error defined as the Euclidean distance between the two. Aberration

errors in focal targeting were generally larger at o�-axis focal positions. Across all fo-

cal positions and frequencies, the focal error was reduced from 2.1 ± 1.2mm without

phase corrections to 1.3 ± 1.0mm with the correction. The error was largest for low

frequencies, but in this case it is still sub-wavelength (e.g., at 250 kHz, the wavelength
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Figure 3.6: Simulated focal fields (i.e., peak pressure amplitude) from a
100mm aperture array in water (left column), through the skull with geo-
metric focusing (middle column) and with phase and amplitude corrections
given by Eq. (3.2.5) for the indicated frequency.

in the brain is approximately 6.2mm). Importantly, the corrected case had no out-

liers. See, for example Fig. 3.8, representing focusing with and without corrections for

1.25MHz at position 4 in Fig. 3.5. The trans-skull field is severely aberrated in the

uncorrected case, causing an uneven distribution with several high pressure regions.

The highest pressure is well away from the target focus (blue circle), resulting in an

uncorrected focal error was 5.1mm [Fig. 3.8(a)]. In the corrected case [Fig. 3.8(b)], the

focal field varies more uniformly and has error 0.6mm. While the phase aberrations

(and thus time delays) do not appear drastically di�erent [Fig. 3.8(c), top], they are

vital to ensure successful focusing. Additionally, the amplitude shading over the ele-

ments [Fig. 3.8(c), bottom] is important to ensure spatial uniformity of the field. While
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Figure 3.7: E�ect of Frequency on Trans-skull Focusing Accuracy. For each
focal target (as indicated and defined in Fig. 3.5), the focal error for various
textbf(a) axial, and (b) transverse positions are shown for the uncorrected
(dashed lines) and corrected cases (solid lines).
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Figure 3.8: Focal Correction with the HASA. (a) Normalized pressure
field for f = 1.25 MHz using geometric delays at position 4 in Fig. 3.5 with
50mm aperture. (b) Normalized pressure field with corrected delays from
Eq. (3.2.5) and amplitude shading. (c) Computed time delays and amplitude
shading over the face of the array.

Table 3.1: Mean and standard deviation focal location error and spot size
with uncorrected [Eq. (3.2.5)] and the corrected [Eq. (3.2.2)] focusing delays,
averaged over all frequencies and positions shown in Fig. 3.5.

Uncorrected Corrected
Aperture Error [mm] Size [mm2] Error [mm] Size [mm2]

50 mm 2.1 ± 1.2 6.8 ± 5.7 1.3 ± 1.0 12.6 ± 16.9

100 mm 2.2 ± 0.7 7.5 ± 6.4 1.0 ± 0.4 9.6 ± 10.9
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Figure 3.9: Focal spot characteristics for axial positions. (a) Normalized
corrected focal pressure for the indicated focal target position (as shown at
top right and in Fig. 3.5) as function of frequency, normalized to the no-skull
case. (b) Normalized area of the focal region for the indicated focal target
position, again normalized to the free-field case.

the phase delays ensure better coherence at the focus, it is possible that with uniform

shading, side lobes or regions of spurious coherence could cause other pressure peaks.

The shading used also means that the total energy emitted in the corrected case was

less, such that the peak pressure amplitude was slightly lower in the corrected case.

Collectively, these results indicate that the HASA enables improved focal targeting

accuracy.

3.3.2 Focal Spot Characteristics

Next, the characteristics of the focal spot were evaluated, again as function of fre-

quency, and compared to the case of geometrical focusing in water. In this way, the

e�ect of the skull may be ascertained both in terms of insertion loss and aberration

Figure 3.9 displays the focal amplitude and spot size for the three axial focal spots

(labeled 1–3 in Fig. 3.5). At lower frequencies, the focal amplitude is comparable to

the water case (peak pressures above 50 % of the no-skull case, and with focal spot size

quite similar. However, at higher frequencies, losses due to absorption become larger

(recall this was modeled as α ∝ f 1.4) such that the peak pressure is approximately 10 %

of the water case [Fig. 3.9(a)]. The absolute size of the focal spot in the corrected case

also decreased (e.g., from 22.9 ± 13.8mm2 at 250 kHz to 6.5 ± 3.7mm2 at 1.5MHz for

the 100mm aperture); however, this decrease with frequency was slower than in the

homogeneous medium case, and thus the size of the focal spot relative to the homoge-

neous case did increase [Fig. 3.9(b)]. In the case for the focal depth was constant and

only the transverse location of the focus, the trends were quite similar, though the

focal area increase was less dramatic; see Fig. 3.10

23



Frequency [MHz]

0

0.50

0.75

0.25

0.5 1.0 1.50.5 1.0 1.5
0

10

20

30

N
or

m
al

iz
ed

 A
re

a

N
or

m
al

iz
ed

 P
re

ss
ur

e

(a) (b)

Frequency [MHz]

2
4

5

5

4

24 5

2

Figure 3.10: Focal spot characteristics for transverse positions. (a) Nor-
malized corrected focal pressure for the indicated focal target positions 2,
4, and 5 (as shown at top right and in Fig. 3.5) as function of frequency.
Amplitudes are normalized to the water only (i.e., no skull) case. (b) Nor-
malized area of the focal region for the indicated focal target position, again
normalized to the free-field case.

3.3.3 In�uence of Array Stando�

To assess the impact of the stando� distance of the array form the skull on focusing, the

focal accuracy was determined for various stand-o� distances d (i.e., the distance from

the skull to the array) for di�erent apertures and targets [Fig. 3.11(a)]. The targets were

maintained at an axial distance of z = 40 mm. Results indicate that the focal accuracy

and improvement were comparable for di�erent stando� distances (0.6 ± 0.3mm with

the correction and 1.6 ± 1.3mm without. The focal error did not have a strong trend

with d, as changing the position of the skull represents a somewhat arbitrary change

in the heterogeneity c(r). Again the lack of outlier cases highlights the importance of

the correction. Figure 3.11(c) shows that for the o�-axis position with a small aperture,

the error was nearly 7mm without the correction, and 1.4mm with the correction and

50mm aperture. Thus the HASA correction is relatively robust to the array’s position

relative to the skull (though any trends are specific to the particular arrangement).

3.3.4 Computational E�ciency

Simulation of a point source in the computational domain over which the focusing

simulations were performed required approximately 2min—this is the time required

for a time reversal implementation depicted in Fig. 3.2. The corrections computed

with the HASA required just 166 ± 37ms. The e�ciency is further underscored in the

three-dimensional case: full wave simulations require on the order of 1 s per time step for

the most e�cient pseudospectral methods,100,101 such that simulating the field would

24



Figure 3.11: E�ect of array stando� distance on trans-skull focusing.
(a) Simulation geometry and target locations. (b) Error in focal maxima
from x = 0 mm as a function of stando� distance for the indicated aperture.
(b) Error as a function of stando� distance for a 100mm aperture at for the
indicated focal target.

require tens of minutes or hours for a single point. While these simulations account for,

e.g., nonlinearity, absorption, and multiple scattering, their clinical utility is currently

more limited. Therefore the HASA-derived corrections o�er an attractive means for

e�cient, adaptive trans-skull focusing.

3.4 Summary of Contributions

In this chapter, the e�cacy of the heterogeneous angular spectrum approach devel-

oped in Chap. 2 was applied to the problem of trans-skull focusing. Via a simulation

study, the focusing accuracy was improved by nearly 70 % over a range of frequen-

cies and apertures. Calculation of the phase and amplitude corrections required on

the order of hundreds of milliseconds with little optimization on nonspecialized hard-

ware. Compared to time-reversal method, the required computation time was orders of

magnitude smaller, and extends naturally to three dimensions. Together, these results

suggest focal corrections with HASA have great potential for clinically relevant appli-

cations where variable focusing without computationally expensive full simulations.
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Chapter 4

Aberration Correction in Passive Acoustic Mapping

4.1 Introduction

4.1.1 Trans-skull Imaging

While interest in using sound to probe the interior of the body was postulated† over

300 years ago,102 it was the technological developments impelled by two world wars

enabled the first ultrasonic imaging in the middle of the 20th century. Earliest 1D

images were demonstrated in the 1940s,103 and techniques were soon applied104,105

for biomedical imaging.‡ Significant advances in microprocessor technologies in the

1980s enabled fabrication of phased array imaging transducers.1 These arrays enabled

electronic steering of the focus, and thus 2D (B-mode) images, without mechanical

scanning. In the intervening years, advances in transducer technology, signal process-

ing techniques, and computational power have greatly improved the clarity, contrast,

and temporal resolution of the acoustic images attainable at present.

Despite such progress, active imaging of the brain with ultrasound remains quite

limited. The skull’s density and sti�ness, each roughly 50–100 % greater than that of

soft tissue, cause a large impedance mismatch, and thus significant reflection of inci-

dent energy. This loss is compounded since the incident and reflected energy must

be transmitted in an active imaging approach. Further complication is caused by ab-

sorption: at megahertz frequencies, the skull has a significant absorption coe�cient,

such that compensation for transmission loss via increased acoustic amplitudes in-

duces significant heating that can be damaging. Passive cavitation imaging (i.e., use

of passively recorded microbubble emissions excited by a separate therapy transducer)

†Robert Hooke’s impressive foresight is highlighted in the summary of this work, p. xv. Though Hooke
concedes in the following sentences that such capabilities may seem, at the time, “phantastick”, he
credits such fantastical thinking for great insight, perhaps equally as wisely.
‡Coincidentally, some of the earliest work in active ultrasound imaging of the body was in the
brain.106,107 However, the presence of the skull was problematic then too, and the results of early
work has been attributed to “fortuitous artifacts.”108
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Figure 4.1: Targeted transcranial focused ultrasound excites the introduced
microbubble contrast agents. The resulting mechanical forces exerted by the
bubbles loosen the tight junctions between the endothelial cells and allows
transport of drugs across the blood-brain barrier, while their acoustic emis-
sions contain information about the level of excitations.

reduces these concerns by half, as the acoustic energy for imaging need only transit

from within the brain to the sensor, with excitation provided by a separate therapeutic

array.109,110 Additionally, the exploitation of the signal coherence by the sensor array

enables increased sensitivity to detect the relatively low-amplitude signals. However,

previously described PAM techniques that can account for medium heterogeneity are

computationally expensive and thus extension of such techniques can benefit signifi-

cantly therapeutic monitoring.

4.1.2 Aberration in Passive Acoustic Mapping

Skull aberrations induce complications in the problem of of source localization, a

priority in monitoring microbubble-enhanced ultrasound therapy. Recent work has

demonstrated that such techniques make possible, e.g., transient disruption of the

blood-brain barrier to enhance delivery and uptake of therapeutic agents;57,111,112 see

Fig. 4.1. The induced microbubbuble oscillations, termed acoustic cavitation, will in

turn radiate spherical waves, and these echoes may be used to infer details about

the nature of the activity.25 Real-time monitoring of this activity usually relies upon

passive cavitiation detection (PCD) whereby a single receiving element is used to

record bubble emissions Imaging of this acoustic cavitation from the bubbles’ emitted

signals is termed passive acoustic mapping (PAM), and several techniques for guiding

microbubble-enhanced FUS interventions have been presented to date.113–115
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Figure 4.2: Uncorrected ASA results in aberration for complex media.
(a) Acoustic emissions from a point source are recorded by a receiver array.
(b) The RF data are then transformed in time to select the frequencies of
interest. The spatial distribution of the field at this frequency at the receiver
p̃0 is obtained. (c) The field p̃0 is transformed into the spatial frequency do-
main to give its angular spectrum P0, which is projected through the volume
with Eq. (2.2.6). (d) The inverse transform is performed to obtain the inten-
sity field (i.e., PAM) throughout the region. (e) If the signal passes through
the skull, aberration in the reconstruction leads to localization error ε .

Direct implementations do not account for medium heterogeneity,25,116–119 though

recent e�orts have incorporated human skull aberration corrections into both frequency-

domain110,120 and time-domain19–21,94,121 PAM implementations. However, to obtain

the corrections, these methods require either invasive measurement55,86 or point-by-

point projections to all potential targets, and thus are either unrealistic or time con-

suming (up to several minutes) unless GPUs are used to speed up the computations.94

The problem of computational speed is well addressed by the ASA method,25 however

its unmodified formulation with a constant speed of sound results in aberration for

trans-skull applications; see Fig. 4.2.

Additionally, the spectral selectivity inherent to frequency domain methods is im-

portant for characterizing the type of oscillation.25,119 Time domain methods116–118

can incorporate filtering to extract certain frequency content, but they retain the entire

series and generally incur high computational loads, again unless GPU units are used

to speed up the computations.118 Reconstructions on the order of milliseconds are

also important for closed-loop control of the microbubble dynamics115 and improved

temporal resolution during microbubble imaging.15,20 Thus there is a need for fast

and frequency selective reconstructions to visualize the cerebrovascular microbubble

dynamics through the skull, which will have important implications for image guided

therapy and imaging.122

This chapter provides an overview of extant PAM techniques, and the trade-o�s
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represented by using the angular spectrum approach to this end. Then, the hetero-

geneous correction derived in Chap. 2 is applied to the problem of passive acoustic

mapping in trans-skull applications. Finally, the first-order correction valid for strati-

fied media is considered for biologically relevant scales and frequencies.

4.2 Passive Acoustic Mapping

In this chapter, the use of passive acoustic mapping for source localization in hetero-

geneous media using solutions derived in Chap. 2. As motivation for the use of the

angular spectrum approach, the underpinnings of passive acoustic mapping of acous-

tic caviation [sometimes termed “passive cavitation imaging (PCI)”] are presented

in this section. Note that the term “intensity” in the context of PAMs refers to the

image intensity, rather than to the acoustic intensity. While these two should be ap-

proximately proportional, no transfer function (i.e., the conversion between the trans-

ducer’s output voltage and the corresponding pressure in pascals) was attempted.†

While quantitative PAM is possible with such considerations,119 the present interest

is in the spatial distribution and harmonic content of the signals, and thus the pro-

portionality between the PAMs and the acoustic intensity field is not considered.

4.2.1 Time Domain

Conventional delay-and-sum beamforming sums the time-shifted signals sn(t) from

each sensor n with delays associated the travel time position in the image. Specifically,

the intensity map I(r) is obtained from113,116

I(r) =
∫ T

0

( ��� N∑
n=1

ns(t − τn)

���2 )
dt (4.2.1)

where n ≡ |r−rn | is the distance from the pixel at r to the sensor at rn, and τn = n/c0

is the travel time between the pixel and sensor; see Fig. 4.3. The first term in the

integrand of Eq. (4.2.1) represents the scale, shift, and sum operation. The principle

in this calculation is that if the signals are shifted by delays given by their travel time

from the true location, then they will sum coherently, thus giving a large intensity value

at that location. Conversely, if delays associated with source-free regions are applied,

†While the knowledge of the physical field values (i.e., in pascals) is important for a full simulation,
the acoustic field of interest for transcranial PAM is radiation due to cavitating microbubble contrast
agents. The strength of these oscillations is well correlated with spectral content of the radiated signals,
which may serve as a proxy for the acoustic intensity; see Sec. 4.2.4.

29



1
2

⁞

⁞

Sensor Array Integration Path

Figure 4.3: Delay-and-Sum Geometry. The delays τn are determined by the
distance n from the pixel at r relative to the sensor n. This in e�ect defines
a parabolic integration path in -t space (right, after Ref. 123) to compute
that pixel’s intensity.

the summation will be incoherent, and the intensity will be correspondingly smaller—

exacerbated by the square operation. Alternatively, Eq. (4.2.1) can be understood as

associating an integration path in –t space, as in Fig. 4.3. The scaling by n accounts

for geometrical spreading between the source and receiver. In practice, the calculation

is made such that incoherent background is removed

I(r) =
∫ T

0

( ��� N∑
n=1

ns(t − τn)

���2 − N∑
n=1

��� ns(t − τn)

���2 )
dt , (4.2.2)

where the second term serves to subtract o� the “DC” contribution.123

4.2.2 Frequency Domain

The Fourier transform has the convenient property that translation of a time domain

signal imparts only a phase di�erence in its transform, since

F [p(t − t0)] ≡
∫ ∞

−∞

p(t − t0) eiωt dt

t ′=t−t0
=⇒

∫ ∞

−∞

p(t′) eiω(t ′+t0) dt′ = eiωt0
∫ ∞

−∞

p(t′) eiωt ′ dt′ = eiωt0 p̃ . (4.2.3)

Thus the time delays in Eq. (4.2.1) [or Eq. (4.2.2)] may be replaced with phase delays

φn = ωτn = ω n/c0 of the frequency domain signals s̃n(ω). In this case, the recon-

30



structed intensity field is formed via119,124,125

I(r) =
∫
Ω

( ��� N∑
n=1

n s̃n eiωτn
���2 )

dω (4.2.4)

where Ω is the set of frequencies at which the map is to be formed. Equation (4.2.4)

has two chief advantages over the time domain version Fig. 4.3 for the purposes of

caviation monitoring. First is that the time shift (a convolution) has been replaced by

a phase shift (multiplication), which is a less computationally demanding operation.

As discussed in Chap. 2, while the transform must be computed, FFT algorithms

are su�ciently e�cient to mitigate this consideration. The second advantage is the

inherent frequency selectivity o�ered by the choice of the integration frequency range

Ω. Since acoustic emissions due to cavitation are relatively narrowband, the region of

integration can be reduced substantially to the smaller bandwidths of interest, further

reducing the computational burden.

4.2.3 Angular Spectrum Approach

The angular spectrum approach (ASA) employs one further Fourier transform of the

data. Just as Eq. (4.2.4) replaced the temporal delays with phase shifts, these still

must be computed for every pixel, due to the presence of . However, as shown in

Chap. 2, the field may be computed throughout the region with use of Eq. (2.2.6). Let

S0 = Fk [ s̃ ] so that

I(r) =
∫
Ω

( �����F−1
k

[
S0 ei

√
ω2/c20−k2x z

] �����2
)

dω (4.2.5)

Note that there is no scaling by n in Eq. (4.2.5), as the propagation is described by

plane waves which are not subject to geometric spreading. The e�ciency is made plain

in the argument of the transform in Eq. (4.2.5), as the calculation may be achieved via

a single array multiplication. The order of computation times for the three methods is

shown in Fig. 4.4, and highlights the importance of exploiting the ASA’s e�ciency: as

the number of points becomes large—especially in the case of volumetric imaging—

inherent e�ciencies are essential to keep computation times tractable.

In the case of the heterogeneous ASA, the argument of the inverse transform in
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Figure 4.4: Approximate computation times for PAM with the time do-
main (TD), frequency domain (FD) and angular spectrum (ASA) methods.
Example is for a 1000 point time series, 2.5GHz processor, and 5% band-
widths for the frequency domain methods.

Eq. (4.2.5) is replaced with either the analogous form of Eq. (2.3.3):

Sn+1 ≈ Sneikz∆z +
eikz∆z

2ikz
(Sn ∗ Λ) × ∆z (4.2.6)

[where Sn = S(kx, ky,n∆z)] in the general case, or

S(kx, ky, z) = S0 exp

[
i
(√
ω2/c2

0 − k2
x z + φ

)]
, (4.2.7)

[where φ is the phase correction given by Eq. (2.5.6)] in the stratified case. Note

that Eq. (4.2.6) precludes the use of a single matrix multiplication, since S must

be calculated in each plane sequentially. Fortunately, an element-wise multiplication

(i.e., Hadamard product) product may still be used for the analytical stratified case

Eq. (4.2.7).

4.2.4 E�ect of Bandwidth

As discussed in the previous sections, the benefit of the ASA for PAM is partially

numerical (due to the recasting of the convolution as a multiplication to the e�ciency

of the FFT), but also due to the relatively narrow bandwidths of interest in PAM for

therapeutic modeling. Microbubble oscillations have well-established126–129 spectral

characteristics depending on the nature of their oscillations. The classical Rayleigh-
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Figure 4.5: (a) Incident acoustic signal is a narrowband pulse (top) with
center frequency f0 (spectrum at bottom). (b) For smaller-amplitude ex-
citations, the oscillations are stable about the equilibrium radius R0, and
harmonics and ultraharmonics are seen in the spectrum. (c) For stronger
excitations, bubble collapse events occur, and there is a rise in the broad-
band baseline (green dashed line). Bubble radii computed from Ref. 126
with |p| = 100 and 500 kPa respectively, and spectra taken from experimen-
tal data.

Plesset equation governs the radius R of a free gas bubble in a liquid:†

pbub(t) − p∞(t)
ρ0︸              ︷︷              ︸

Forcing

= R ÜR +
3

2

(
ÛR
)2︸         ︷︷         ︸

Nonlinear Oscillator

+
4νliq

ÛR
R
+

2γ

ρL R︸           ︷︷           ︸
Damping

, (4.2.8)

where νliq is the kinematic viscosity of the liquid, and γ is the surface tension. That

Eq. (4.2.8) has the form similar to that of a damped nonlinear oscillator is borne out

by the observed dynamics. For a narrowband harmonic excitation with frequency f0
[Fig. 4.5(a)], the resultant bubble oscillations (and thus pressure radiated into the fluid

and received by the imaging array)‡ will comprise largely harmonic ( f = n f0, where

n = 1,2, . . .) and ultra-harmonic [ f = (n + 1/2) f0, where n = 0,1,2, . . .] components;

see Fig. 4.5(b). These relatively small-amplitude [R(t)/R0 ∼ 1] oscillations are termed

“stable cavitation” and are the type that are most highly correlated with reversible

†This simplified model neglects losses due to radiation, thermal e�ects, and the presence and dynamics
of an encapsulating shell. A more complete contemporary model is described in Ref. 126; see also
Sec. 5.3.2.
‡Strictly, the pressure radiated by the oscillating bubble is not proportional to its radius R; rather
prad = (ρliq/r)

(
R ÜR + 2R2

)
+O[(R/r)−4], where r is the radial distance and ρliq is the liquid density.130
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Figure 4.6: Geometry and source signal for trans-skull simulations.
(a) Sound speed map used in simulation. (b) Normalized time series signal
and (c) spectrum of the source pressure specified in the simulation. Gray
box indicates bandwidth used for beamforming.

blood-brain barrier opening.131–134 Larger amplitude oscillations due to stronger ex-

citations lead to bubble collapse events, termed “inertial cavitation”, and which are

associated with more destructive phenomena such as tissue ablation.113,135,136 These

collapses give rise to radiation that is impulsive, and manifests as a rise in broadband

emissions [Fig. 4.5(c); note the position of the dashed green line indicating a rise in

the broadband baseline from (b)].

Thus, the frequency content corresponding to indications of stable cavitation rep-

resent a few narrow bands in the spectrum. Thus, the PAM reconstruction need be

computed only for a limited number of frequency bins, such that these harmonic and

ultraharmonic components are in Ω [in Eq. (4.2.5)]. Then, the number of operations

may be reduce from Nt/2 (where Nt is the number of time samples, typically a few

thousand) to several or tens. In the case of inertial cavitation, some care must be

taken, since a narrow frequency range may not be an accurate representation of the

baseline. In such cases a few regions can be chosen (e.g., o�set quarter multiples of

the excitation, between the ultraharmonics where no bubble signal is expected) to

provide a reasonable capability to detect inertial cavitation.115
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4.3 Methods

4.3.1 Simulations

Acoustic simulations were performed in k-Wave,23 a pseudo- spectral time domain

acoustic simulation toolbox for MATLAB. While the heterogeneous ASA is fully ap-

plicable to volumetric reconstructions (i.e., recovery of a three dimensional field from

the measurement over a 2D virtual array, see Sec. 5.4.1.3), simulations in this chap-

ter were performed in 2D to reduce the computational time required for the many

simulations. The computational environment was the same as that used for the skull

focusing simulations (Sec. 3.2.3), and its geometry is shown in Fig. 4.6(a).

Bubble emissions were approximated as Gaussian pulse sources, with center fre-

quencies of 400 kHz, 800 kHz, 1.2MHz and 5% fractional bandwidth. These frequen-

cies were chosen as to coincide with the frequency range of multiples (i.e., bubble

harmonic frequencies) in the approximate range of the fundamental frequency modes

of clinical transcranial FUS systems.137

Additionally, to determine the e�ectiveness of the stratified ASA correction for

biomedically-relevant scales, a stratified medium which comprised a mean sound

speed of 1540m/s, augmented by a 25 % Gaussian profile with variance of 30mm.†

A mean density of 1043 kg/m3 and attenuation of 0.54 dB/cm/MHz were defined for

the entire medium138 and 99 narrowband sources of 1MHz were distributed uniformly

in the medium as in Fig. 4.7(a). Finally, while the ASA is relatively robust to the addi-

tion of noise to the raw channel RF data,25 uniformly weighted (i.e., white) noise, with

amplitudes up to 5 times the peak value of the RF data were add prior to beamforming

to investigate the performance of the phase correction in the presence of measurement

noise.

4.3.2 PAMs and Source Localization

The reconstructed source location (xr, zr) was assumed to be the position of peak

intensity of the PAM I(x, z), as computed from Eq. (4.2.5) with Eq. (4.2.6) for the

trans-skull case or Eq. (4.2.7) in the stratified case. The pseudo-code algorithm to the

fully heterogeneous case is given by algorithm 1. The error was defined relative to the

†Use of the the stratified correction with the skull gave localizations that were actually worse than the
uncorrected case. This result might be expected, as this situation violates three of the assumptions of
its derivation (the medium is not stratified, the sound speed changes are not small, and the sound
speed changes change abruptly over a wavelength). The latter is likely the most disruptive to the
result, see Appendix A.3.2.
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Figure 4.7: (a) Positions of sources in the stratified simulations. (b) Sound
speed profile as a function of the axial distance z from the transducer array.

known source position from the simulation (xtrue, ztrue) as

ε =

√
ε2

x + ε
2
z =

√
(xr − xtrue)

2 + (zr − ztrue)
2 . (4.3.1)

This straightforward approach works well in the case of a single source, but in the

case of multiple sources of varying intensties, a more sophisticated approach would

be required (see Sec. 5.2.1).

4.3.3 Experimental Validation

To demonstrate the feasibility of the proposed aberration correction method, in vitro

experiments were performed. A custom 13-by-13 element matrix transducer array

(Imasonic, Voray-sur-l’Ognon, France) was positioned in a 3D printed frame. The

transducer was connected to a 256-channel research ultrasound system (Verasonics,

Kirland, WA, USA) and controlled with a MATLAB interface. A right parietal seg-

ment of a human skull (Skulls Unlimited, Oklahoma City, OK, USA) approximately

10 cm-by-5 cm-by-0.5 cm was degassed overnight (approximately 12 hours) and a�xed

to the frame. The frame was then placed in a degassed water tank.

To determine the localization accuracy, a source with a known position relative to

the transducer is required. An omnidirectional hydrophone (Reson Slangerup, Den-

mark) was connected to an arbitrary waveform generator (Keysight, Santa Rosa, CA,
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input : Time series RF data p(x,0, t), Sound Speed c(r), Step Size ∆z,
Frequencies { fn}

output: Intensity map I(x, z)

// Define auxiliary functions;
c0 = avg c(r);
µ = c2

0/c
2(r);

λ = (ω/c0)
2(1 − µ);

// Take temporal transform of RF data (z = 0);
p(x,0, t) → p̃(x,0,ω);
// Initialize;
I(x, z) = 0;
for fi in { fn} do

// Take spatial transform at that frequency;
p̃(x,0,ωi) → P(kx,0,ωi) = P0;
// Propagate to depths;
for j = 1; j <= N ; j + + do

// Compute convolution in spatial domain;(
P j−1 ∗ Λ

)
= Fk{F−1

k [P
j−1] · λ(x, j∆z)};

// Step forward by ∆z;
P(x, j∆z,ωi) = P j = P j−1eikz∆z + eikz∆z

2ikz

(
P j−1 ∗ Λ

)
× ∆z;

end
// Take inverse and add in contribution;
p̃(x, z,ωi) = F−1

k

[
P0eikz∆z

]
;

I(x, z)+= ‖ p̃(x, z,ωi)‖
2

end
Algorithm 1: Algorithm for computation of PAMs from time series RF data.

3D Positioning

Verasonics

Sig. Gen.

SYNC
MATLAB

Hydrophone Water Tank

Matrix Array
Frame

Skull
Segment

Figure 4.8: Experimental setup for the 3D PAM experiments. A hy-
drophone was used as a proxy for cavitation source, and scanned through a
grid of known positions. Acoustic emissions were recorded through the skull
by the matrix array transducer.
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USA), and a 40-cycle windowed sine pulse was applied at the hydrophone’s center

frequency 1MHz. A transmitted frequency above the matrix array’s center frequency

(but within its 50 % bandwidth) was chosen as the HASA correction is more valid for

higher frequencies; see Appendix A and B.1. Passive recording of the acoustic signal

by the the matrix array was synchronized through an output trigger of the waveform

generator. The position of the hydrophone was controlled with a three-axis position-

ing system (Velmex, Bloomfield, NY, USA). The experimental setup is illustrated in

Fig. 4.8. As the array pitch (1.8mm) was larger than the acoustic wavelength (1.5mm),

the data were interpolated by a factor of 6.†

4.3.3.1 Registration

To implement the corrections calculated with the HASA, knowledge of the sound

speed field relative to the transducer is required. The material properties were ex-

tracted from a micro-CT scan in the same manner as for the simulations [i.e., with

Eq. (3.2.9)]. Three removable fiducial markers were placed in shallow (several millime-

ters) holes drilled into the skull surface for the micro-CT scan. Once in the frame, a

plane wave volumetric image of the skull segment with the markers was acquired (21

angles in 1 degree increments about the x and y-axes, 42 angles total). The sound

speed data, obtained from the CT image as described in Sec. 3.2.3, and ultrasound

image, obtained from the plane wave acquisition, were then registered using these

markers to obtain the appropriate geometry for the evaluation of the HASA PAM

calculation. Once the acoustic image was obtained, the markers were removed from

the skull for the trans-skull imaging experiments.

4.3.3.2 Evaluation Metrics

To assess the improvement a�orded by the HASA for passive localization accuracy,

two metrics were defined. First was the accuracy of the individual peak positions in

the PAM relative to the true source position (i.e., the localization error). However,

due to the sequencing of the Verasonics hardware and 3D positioning software, indi-

vidual passively-recorded time series were not associated one-to-one with individual

source positions; instead they could be compared to the entire set of all known source

†Note that this operation does not inject information into the measured data, but instead enables a finer
computational grid available from the CT data. The discretization requirement Eq. (2.6.1) requires
sampling twice per wavelength in the x- and y-directions. Since the received signal is due to a source
approximately normal to the array, the principal wavenumber component will be in the z direction.
Thus kx ∼ ky ∼ 0, and the sampling requirement is met for F# on the order of 1.
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positions. Thus rather than the true error, instead the lower bound on the error was

established. That is, if the reconstructed peak is at rr , the N true hydrophone positions

were at {r i} then the lower bound on the error was

εmin = minN
��rr − {r i}

�� (4.3.2)

Since proximity to any of the source positions is sought by the lower bound metric,

these errors will be significantly lower than the true source localization error. How-

ever, these values averaged over all sources will represent the relative accuracy of the

localized points.

The second metric was an image correlation with a ground truth reference. First

the reference image was created by superimposing uniform amplitude 2D Gaussian

distributions with size approximately equal to the system point spread function† at

each source location. Then a composite image is formed in the same manner from

the peak locations in each PAM, by superimposing Guassians, but with each Gaussian

amplitude equal to the amplitude of the PAM at the detected peak location. The

product of these two images was then computed, and the image correlation was defined

as the sum total intensity of all pixels over the product image, normalized by the total

intensity of the composite image; i.e.,

Correlation ≡
ΣΩI(r) ◦ Iref (r)

ΣΩI(r) ,
(4.3.3)

where ◦ represents the Hadamard (element-wise) product, and Ω is the entire image

domain. The correlation value is a measure of how well the peaks match with what

would be expected for a perfect reconstruction.

†See also Sec. 5.1.
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4.4 Results

4.4.1 E�ect of Frequency on Localization

Figure 4.9: Frequency dependence of source localization accuracy for
trans-skull PAM. Comparison of source localizations and associated errors
(insets) for the uncorrected (top, purple) and corrected (bottom, orange),
for (a) 400 kHz, (b) 800 kHz, and (c) 1.2MHz sources beamformed with
a 50mm aperture. The size and transparency of the makrers indicates the
relative amplitude of the PAM peak at that location. At far right in (c) are
representative corrective and uncorrected maps for the indicated source lo-
calizations.

Figure 4.9 demonstrates the improvement in localization accuracy and signal strength

when the corrected version Eq. (2.3.3) of the ASA is used compared with the uncor-

rected case Eq. (2.2.6). Qualitatively, the corrected source locations recovered from

the corrected PAMs (orange) appear much closer to the true source positions (gray)

than do the uncorrected localizations (purple). Without the correction the mean lo-

calization error was 2.3 ± 1.4mm over all frequencies, while in the corrected case it

was reduced to 0.9 ± 0.6mm. The intensity of the peaks in the PAMs (indicated by the

size and transparency of the markers) was also seen to be approximately 35 % higher

in the corrected case. Crucially, the localizations in the corrected case presented no

outliers—note the PAMs shown in Fig. 4.9(c), for which the uncorrected case results

in centimeter-scale error, while in the corrected case the error is sub-wavelength.

The insets of each of Fig. 4.9(a–c) show the distribution of the localization errors

relative to true positions [i.e., an marker at (0, 0) of the inset indicates perfect lo-

calization of that source]. While a slight error bias toward the transducer was seen

at the lowest frequency of 400 kHz (likely due to the smaller relative aperture;139 see
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Fig. 4.10), the distribution of errors in the corrected case showed no bias and small

magnitude in the 800 kHz and 1.2MHz. That the improvement was most pronounced

at higher frequencies is unsurprising, since the slowly-varying medium assumption

|∇c |/c � λ is more valid at these frequencies.

4.4.2 E�ect of Aperture on Localization

To determine the e�ect of the receiver aperture on localization error, the source

frequency was fixed at 400 kHz, and the aperture was increased from 50mm up to

100mm, while keeping the element spacing constant (∆x = 200 µm).† Figure 4.10 in-

dicates that a wider aperture enables improved accuracy. While some error was seen

at 400 kHz for the corrected case [Fig. 4.9(a) and Fig. 4.10(a)], a wider aperture [such

that the kd becomes similar to the 800 kHz case of Fig. 4.9(b)] reduces this error

comparably; see Fig. 4.9(c).

Figure 4.10: Frequency dependence of source localization accuracy for
trans-skull PAM. Comparison of source localizations and associated errors
(insets) for the uncorrected (top, purple) and corrected (bottom, orange), for
400 kHz sources beamformed with (a) 50mm, (b) 75mm, and (c) 100mm
apertures. As in Fig. 4.9, the size and transparency of the markers indicates
the relative amplitude of the PAM peak at that location.

Finally, to determine the localization error over a larger field of view of the trans-

ducer, a grid of sources were positioned as shown in Fig. 4.11. These sources were

taken to have center frequency 1MHz and beamfored with and without the correction

as before. Figure 4.11(b–c) demonstrate that, especially for larger apertures and along

†While a constant pitch increases the number of elements for the larger apertures, the improvement in
localization is mostly due to the larger spatial sampling of the field.
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Figure 4.11: E�ect of source position on source localization accuracy for
trans-skull PAM. (a) Position of 1MHz sources with respect to the array po-
sition and medium properties. (b) Localization accuracy for the indicated
aperture size for each source in (a) for the uncorrected case. (c) Localiza-
tion accuracy for the indicated aperture size for each source in (a) for the
corrected case.

the array axis, the reduction of localization accuracy is substantial. Importantly, there

are no outlying localizations with nearly centimeter scale errors as in Fig. 4.11(b).

Table 4.1 summarizes the mean errors and peak intensities for the localizations in

Fig. 4.11.

4.4.3 Strati�ed Results

The stratified medium solution derived in Chap. 2 is more restrictive than the general

HASA as it requires not only that the change in sound speed occur over scales that

are long compared with the wavelength, but also that this gradualness is significantly

Table 4.1: Mean and standard deviation PAM localizaion error and peak in-
tensities with uncorrected [Eq. (4.2.5)] and the corrected [Eq. (4.2.6)] beam-
forming, computed over the positions shown in Fig. 4.11.

Uncorrected Corrected
Aperture Error [mm] Intensity Error [mm] Intensity

50 mm 3.7 ± 2.2 0.73 ± 0.46 1.2 ± 0.7 1.0 ± 0.60

75 mm 2.5 ± 1.7 0.66 ± 0.36 0.9 ± 0.5 1.0 ± 0.47

100 mm 3.5 ± 1.9 0.62 ± 0.28 0.8 ± 0.4 1.0 ± 0.39
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greater than the magnitude of the sound speed change (see Appendix A.3.2). As the

sound speed changes in the skull compared to water and tissue are relatively large

(60 %) and that the changes are abrupt meant that the source localization for the

trans-skull simulations was not improved.

Figure 4.12: (a) Axial localization errors for the corrected (left) uncor-
rected (right) beamforming, for the source positions shown in Fig. 4.7(a).
(b) Mean total error as a function of depth (averaged over all lateral posi-
tions) for the indicated aperture for the corrected (orange) and uncorrected
(purple) cases. (c) Mean total error as a function of depth (averaged over
all lateral positions) for 100mm aperture for the corrected case with the
indicated source frequency.

However, its utility at scales of relevance to other parts of the body was investi-

gated with the test case shown in Fig. 4.7. Figure 4.12 demonstrates the improvement

in source localization due to the phase correction for 1MHz sources. Without the

phase correction, the error was 2.05 ± 1.00mm, while with the phase correction it was

0.97 ± 0.20mm. The error in both the corrected and uncorrected case was principally

in the vertical (axial) direction ( |εz,avg/εx,avg | = 34.6 and 35.6 for the corrected and

uncorrected cases, respectively) and is plotted in Fig. 4.12(b). To understand the ef-

fect of the beamforming aperture, the data were beamformed and the soruces were

localized using three di�erent aperture sizes. For the 50 mm aperture, some localiza-

tions in the corrected case have larger errors, however for larger apertures (75mm and
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Table 4.2: Mean and standard deviation PAM localizaion error and peak in-
tensities with uncorrected [Eq. (4.2.5)] and the corrected [Eq. (4.2.7)] beam-
forming, computed over the positions shown in Fig. 4.7(a).

Uncorrected Corrected
Aperture Error [mm] Intensity Error [mm] Intensity

50 mm 1.7 ± 1.3 1.0 ± 1.3 0.96 ± 0.81 1.0 ± 1.3

75 mm 1.9 ± 0.94 1.0 ± 1.0 0.81 ± 0.27 1.0 ± 1.0

100 mm 2.1 ± 1.0 1.0 ± 0.84 1.0 ± 0.2 1.0 ± 0.85

100mm) which cover the horizontal extent of the sources, the corrected localization

accuracy was within approximately one half wavelength [Fig. 4.12(b), orange]. In the

uncorrected case, (purple) the error was largest for depths near 25mm and 75mm.

These are the extrema of dc/dz, and thus where discounting the medium variation

is most egregious. The mean e�ect of aperture on the localization error and peak

intensity is summarized in Table 4.2. Interestingly, unlike in the trans-skull case, the

peak amplitudes were quite similar with and without the correction, perhaps because

the medium imparts a more systematic phase aberration. Thus without correction,

the coherence is still high, just corresponding to the incorrect spatial location.

Finally, the absolute localization accuracy did not depend strongly on the wave-

length [Fig. 4.12(c)]. The absolute localization error was similar for all frequencies

(mean 0.91mm, 0.97mm, and 0.88mm for 0.5MHz, 1.0MHz, and 1.5MHz, respec-

tively), as was the improvement relative to the uncorrected case at that frequency

(mean improvement 55 %, 57 %, and 53%). The short wavelength criterion was roughly

met in all cases; for the longest wavelength (500 kHz), |d2 A/dz2 | ∼ 0.4.

Thus the stratified medium correction, while no applicable to the specific problem

of trans-skull imaging, does improve the accuracy of source localization at biologically

relevant scales and frequencies.

4.4.3.1 E�ect of Noise

While all simulations presented heretofore assumed ideal measurement, any realis-

tic application of these techniques will be subject to measurement noise. To demon-

strate the robustness of both the homogeneous and stratified ASA solutions to noise,

the RF data from the simulations whose results are reported in Fig. 4.12 (100mm

aperture, 1MHz sources) were beamformed after the addition of uniform white noise

with amplitude 1 to 5 times that of the maximum value of the recorded RF data.

The resulting PAMs show clear peaks with comparable error to the noiseless case
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Figure 4.13: E�ect of noise on localization accuracy at the biomedical
scale (Fig. 4.12, 1MHz sources, 100mm aperture). (a) Mean localization
error as a function of the added noise level for the uncorrected (purple) and
corrected (orange) ASA. (b) Center channel waveforms from the simulation
after addition of the indicated amount of noise.

[Fig. 4.13(a)] despite apparent total corruption of the time series data [Fig. 4.13(b)].

Averaged over the entire grid [Fig. 4.7(a)], the error without noise was 0.97 ± 0.20mm

and 2.00 ± 0.97mm in the corrected and uncorrected cases, respectively. At the noise

level of 5, the average errors were 0.93 ± 0.25mm with the correction and 2.0 ± 1.0mm

uncorrected. The noise manifests in the PAMs as irregular interference patterns [arrow

in Fig. 4.13(a)], which can cause aberrant high intensities and thus spurious localiza-

tions at still larger noise values. While the CNR of the images was reduced from

66.1 dB in the noiseless case to 43.2 dB when the added noise had amplitude up to

5 times that of the mean signal level, it remained at tens of decibels over all cases.

However, Fig. 4.13 confirms that both the conventional and stratified medium ASA

techniques are suitable for noisy conditions.

4.4.4 Experimental Results

Figure 4.14 shows the results from the ASA and HASA for trans-skull PAM local-

izations. When there was no skull between the source and receiver, the ASA recov-

ers the shape and position of the source (i.e., the emitting hydrophone) as expected

[Fig. 4.14(a)]. However, when the skull was introduced, the intensity of the image

was reduced significantly (approximately 30 dB). Additionally, when no correction

was used, noticeable aberration is present in the reconstructed image. The image in

Fig. 4.14 indicates that while there is still evident coherence in the PAMs (note that

the extracted peaks retain the “T” shape traced by the source), the localizations are

shifted by approximately 1mm in the horizontal direction.

Use of the ASA correction improves both degradations: first, the PAM intensity is
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Figure 4.14: Composite images from peak localizations from 3D PAM ex-
periments. Localized points (colored dots) compared with the truth positi-
tions of the source (white dots). (a) Reconstructed map without the skull
segment. (b) Map with the skull and without corrections applied. (c) Cor-
rected trans-skull map with. Scale is the same (b) and (c), which are 30 dB
below (a). (d) Distribution of lower bound errors for the corrected, uncor-
rected, and no-skull cases.

larger by a factor of about 2.09 relative to the uncorrected case. Additionally the mean

lower bound error† was reduced over all cases: without the HASA corrections, this

bound was 1.3 ± 1.3 µm, while with the corrections it was 0.2 ± 0.3 µm, very close to

the result for the no skull case (0.2 ± 0.2 µm). As seen in Fig. 4.14(d), the skull intro-

duced a somewhat systematic error in the uncorrected case (purple), which was ame-

liorated with the ASA correction (orange). Thus the HASA provide a viable means

of correcting aberration in volumetric trans-skull imaging.

4.4.4.1 In�uence of Registration Parameters

Given the relatively low imaging frequency of the matrix array (820 kHz, wavelength

1.8mm), the resolution of the resulting volumetric image was significantly degraded

from that of the CT image (voxel size 0.1mm). Thus while fiducial markers were

used to ensure the position and orientation of the surface were approximately correct

[Fig. 4.15(a)], optimizing the alignment proved somewhat delicate. Figure 4.15(b–c)

demonstrates the e�ect of changes in the skull registration values on the correlation

metric obtained with the image formed when the registration was altered slightly.

Note that the micro-CT data and volumetric ultrasound image were interpolated to

†While all true source positions were known, due to collection constraints, individual PAMs could not
be assigned to individual truth positions (i.e., the RF data acquisitions were unindexed). Thus for each
localization, its distance to the nearest of all source positions was recorded to establish a lower bound
on the localization accuracy. That is, the mean lower bound error is the mean distance between the
colored dots and the white dots in Fig. 4.14.

46



2 cm

Fiducial
Markers

Ultrasound micro-CT

C
or

re
la

ti
on

 [A
U

]

Shift [mm]
+5-5 +5-5

0.5

1.0

Shift [deg.]

(a) (c)(b)

Uncorrected

Figure 4.15: E�ect of skull registration (a) Registered acoustic (left) and
micro-CT (right) images of the skull segment used for the trans-skull exper-
iment with representative cross sections. (b) Variation of the image correla-
tion metric when the registered data was shifted in each dimension. (c) Vari-
ation of the image correlation metric when the registered data was rotated
about each dimension. Dashed gray line indicates the correlation metric for
the uncorrected map.

the same voxel size (200 µm), such that the registration did not require scaling. Thus,

there were six degrees of freedom: rotation and translation along x, y, and z. For

instance, in Fig. 4.15(b) it is seen that the correlation is most sensitive to the shift in

the z-direction; if the registered skull position were taken to be 6mm closer to the array

(with all else equal), then the resulting image correlation would be not much better

than the uncorrected case. Performing the correction with the sound speed field shifted

6mm in the opposite direction increases the correlation, however the mean error lower

bound rises to 5.3 ± 4.9 µm compared to the baseline case. The correlation was seen

to be less sensitive to rotation [Fig. 4.15(c)], with the most dramatic e�ects seen for

changes in θx (i.e., the roll angle). This was likely due to the relatively large roll angle

of the skull as positioned in the holder. Together, the results represented in Fig. 4.15

demonstrates that the quality of the resulting corrected PAM is sensitive to registration

of the skull, especially to translations. While registration of the sound speed data and

physical arrangement of the transducer is necessary, this capability is extant in present

transcranial FUS applications.140,141

4.4.5 Computational E�ciency

As iterated throughout this work, a central advantage of the ASA is its computational

e�ciency. While both the full and stratified corrections incur additional computational

expense compared to the uncorrected case, they are still of great interest compared

to other aberration correction methods provided that the order of magnitude is com-
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Table 4.3: Mean and standard deviation PAM computation times for the
uncorrected [Eq. (4.2.5)], corrected [Eq. (4.2.6)], and stratified [Eq. (4.2.7)]
beamforming.

Uncorrected Corrected

HASA 44 ± 4 ms 166 ± 37 ms

Stratified 43 ± 44 ms 125 ± 125 ms

parable (recall Fig. 4.4). Table 4.3 reports the computational times required for the

uncorrected and corrected 2D PAMs in the stratified and heterogeneous ASA cases de-

scribed in Secs. 4.4.1 to 4.4.3. Note the grid sizes di�ered between the trans-skull and

stratified cases, but the comparison between the corrected and uncorrected are fair

for each. The results confirm that the ASA remains computationally e�cient in both

the stratified and fully heterogeneous cases. For the experimental case, the HASA cor-

rection required approximately 1/3 more time than the uncorrected case. For 234-by-

234-500 point computational grid, 2.100 ± 0.016 s were required for the conventional

ASA, while the HASA took 2.780 ± 0.041 s per point. These computations could be

improved with more considered vectorization of the operations.

4.5 Summary of Contributions

In this chapter, it was demonstrated through experimental and simulation studies that

the HASA method derived in Chap. 2 can address successfully localization errors

caused by aberrations induced by a non-uniform medium. In the simulated trans-skull

case, errors were seen to be reduced from about 3mm to less than 1mm across a range

of frequencies, apertures, and source positions. While the skull did not well enough

approximate a stratified medium for the analytical solution, this result did appreciably

reduce the localization error for more slowly-changing layered media. In volumetric

experiments, the error lower bound was reduced five-fold and the image correlation

doubled with the HASA compared to the uncorrected case. Additionally, the stratified

medium correction provided sub-wavelength localization accuracy at biologically rel-

evant scales and frequencies. Finally the methods were shown to be computationally

e�cient. While the corrections require an approximately threefold increase in com-

putation time compared to the homogeneous ASA, these times remained an order

of magnitude below those required for spatial domain calculations. Together, these

results indicate significant relevance of the method to applications in trans-cranial

passive acoustic mapping.
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Chapter 5

Improving Resolution

5.1 Introduction

5.1.1 Limitations on Resolution

Ultrasonic imaging, like any wave-based imaging, is hindered by fundamental physical

limitations of di�raction due to the spatial extent of the wave, as well as the finite

aperture of the imaging array.41 This constraint—termed the “di�raction limit”—was

first stated142–144 as the required separation of two point ideal sources such that their

di�raction patterns do note overlap†

∆xmin ≈ 0.61λ ×
d
a
, (5.1.1)

where λ is the wavelength, d is the distance from the aperture and a is the radius of

the circular aperture through which the sources are imaged; see Fig. 5.1. The constant

of proportionality in Eq. (5.1.1) corresponds to the first root of the the Bessel function

J1(x), which defines the spatial extent of the source image.

For megahertz frequencies in tissue, and imaging depths and apertures of cen-

timeter order, the resulting theoretical resolution limit is on the order of 1mm. A

more full characterization of the maximum achievable resolution is given by the point

spread function (PSF) of the system,1 which includes e�ects such as aberration, and

†In the case of a circular aperture, the intensity pattern is governed by

I ∝ [Jinc (ka sin θ)]2 ,

where Jinc ξ ≡ J1(ξ)/ξ For small angles, (i.e., the object is near the center of the aperture), sin θ ' θ,
and the first null of J1(ξ) occurs at ξ = 3.8317. Then, since ∆x = d · θ, the first minimum of the
intensity occurs at145

ka sin θ = ka sin (∆x/d) '
(
2π

λ

)
a
∆x
d
= 3.8317 =⇒ ∆x = 1.2197

dλ
2a

.
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Figure 5.1: E�ect of di�raction on image resolution. (a) When a point
source is imaged through a circular aperture of radius a, the resulting
intensity distribution has spatial extent governed by the incident wave-
length. (b) Resolving two sources requires spatial separation according to
Eq. (5.1.1).

provides a lower limit on its ability to resolve closely spaced point sources. While this

blurring of subwavelength sources in the image is an inevitable consequence of the

physics recent work has sought to exploit acquisition and data processing techniques

to circumvent the limitation characterized by the PSF.

5.1.2 Super-resolution

“Super-resolution” refers in general to any method that achieves an e�ective resolution

below the classical limit given by Eq. (5.1.1). Improving the resolution of optical sys-

tems has been of interest in biology for many decades, as the size of cellular structures

falls below this limit for optical wavelengths (∆xmin ∼ 200 nm).146 Techniques involving

larger e�ective apertures147,148 improved the e�ective resolution, but were still subject

to di�raction. Seminal advances† came at the beginning of the 21st century through

patterned excitations,149–152 and the successive localization of stochastically blinking

photophors.153–155 Such advances have enabled visualization of cellular structures as

small as 20 nm,156 representing a tenfold improvement of the classical limit.

Inspired by these optical techniques in optical microscopy,154,155 and with evidence

that scattering from individual microbubble contrast agents could be detected,157

acoustic techniques exploit the successive localization of individual microbubble con-

trast agents over time, which are su�ciently sub-wavelength to be treated as point

†The 2014 Nobel Prize in chemistry was awarded to E. Betzig, S. Hell, and W. Moerner “for the
development of super-resolved fluorescence microscopy.”
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Figure 5.2: Lower bounds on the lateral resolution for active (solid lines)
and passive (dashed lines) images with the indicated aperture at 10 cm depth
in water. The active limit is given by Eq. (10) of Ref. 164, with SNR of 60 dB,
50 % bandwidth, signal correlation ρ = 0.9, and a time kernel scaled relative
to 30 µs for 5MHz.165 The passive limit is given by Eq. (11) of Ref. 124.

sources.158 These so-called “super-resolution” (SR) or “ultrasound localization mi-

croscopy” (ULM)† techniques use successive localizations of single point source sep-

arated in time to allow identification of sources that are too closely spaced (i.e., below

the di�raction limit) to be resolved simultaneously.15 This is of particular importance

for PAM, whose resolution is typically worse than active methods due to the lack of

time-of-flight information [see Fig. 5.2].

In SR techniques, intensity peaks in the acoustic image are replaced with a single

point from one158 or several15 bubbles isolated in each frame with non-overlapping

PSFs, and thus the beamforming and point source localization methods are of primary

importance. Most existing literature employs active acoustic imaging (e.g., B-mode or

ultrafast plane wave imaging),166 wherein the (linear) signal scattered by a single bub-

ble forms the basis for the point source localization [Fig. 5.3(a)]. Localization is most

commonly performed by Gaussian fitting of the peaks of the image intensity due to the

bubble sound scattering19,167–170 and reduction of the PSF to a single point. However,

in the presence of several sources in the same image, only strong scatterers—which

might erroneously including linear tissue response rather than contrast agents—meet

the acceptance criterion per frame, which incurs a narrower dynamic range and limits

the number of bubbles super-localized per frame, increasing acquisition time. Other

†Strictly, ULM is a specific super-resolution technique that uses super-localization of microbubbles.
While other acoustic super-resolution techniques that do not rely on ULM have been proposed,159–162

this is the method most widely studied for the applications discussed here.163
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Figure 5.3: Procedure for ultrasound localization microscopy. (a) Super-
localized points are isolated from the raw contrast-enhanced ultrasound
frames. (b) Once many peaks are isolated, they can be (c) combined to
form the final super-resolution image.

localization methods include, center of mass calculations,158,171 time domain fitting of

the RF data,172–174 statistical approaches,160,161 and the use of acoustic metamateri-

als.162,175 These SR approaches have demonstrated better than an order of magnitude

improvement in the e�ective resolution (up to 20-fold), and produced intriguing im-

ages of vasculature and good estimates of flow velocities in microvessels.15,171,176,177

One of the main challenges in these methods is the separation of the bubble sig-

nal from random motion and tissue scattering; this can be exacerbated in low flow

vessels (below 1mm/s,178 which are also the vessels of interest for SR techniques due

to their size.179 Contrast harmonic imaging, in which bubble localization is based on

microbubble nonlinear echoes, could potentially mitigate this problem,158 albeit at the

cost of lower frame rate and increased risk of microbubble collapse or deflation due

to the need for strong nonlinearities (i.e., high SNR), which might prevent e�ective

bubble tracking.166 Additionally, full accounting of out of plane motion necessitates

volumetric imaging,180 which requires extended acquisition times and added compu-

tational expense.172 PAM based on the ASA is well suited to address these issues,

since it has excellent frequency selectivity compared to active methods,19 may detect

sources even at SNRs below 0 dB,25 is significantly more e�cient than time domain

methods19,20,181 (which is of particular importance for 3D imaging), and allows for

corrections due to heterogeneity of the medium as discussed previously.
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While both passive and active methods are able to resolve vessels at an order of

magnitude below the di�raction limit, currently the analysis of the vascular structure,

which is important for diagnosis, is in its infancy.180,182–184 Likewise, methods for ac-

curate and quantization-free estimation of microvascular velocity have received more

attention only recently, with methods originally developed for transportation analy-

sis185 providing the most promising approach.167,171 Formal and computationally e�-

cient methods to analyze the SR image content could play major role in determining

the lower limit on the number of points required, which is important for optimizing

the acquisition time, reducing motion artifacts, and extracting diagnostically useful

information.

In this chapter twomethods are proposed for application in acoustic super-resolution

imaging. The first is a method based on morphological image processing techniques

to super-localize intensity peaks due to microbubbles from the raw contrast-enhanced

frames. The second technique employs local projection of the peaks to identify vascu-

lar structure and size. The performance of these methods on both PAM data and from

an ex ovo chicken embryo model are evaluated and results compared to the di�rac-

tion limited case. Together, these methods—which are both computationally e�cient

and agnostic to image dimension (i.e., 2D or 3D data) or modality—have significant

promise for microvascular quantification.

5.2 Super-resolution Methods

The proposed vessel imaging and quantification process comprises two steps: first,

individual bubbles must be super-localized within the di�raction-limited image to ob-

tain a point cloud (peak detection). Then, the peaks are associated in time and space

to infer information about the vessel’s size, structure, and flow velocity.

5.2.1 Peak Detection

The first task in the generation of super-resolution is super-localization, in which the

signal due to microbubble scattering is isolated from the raw acoustic image, and

replaced with a point representing the contrast agent position. The steps involved in

using MR to accomplish task are enumerated in the following sections.

5.2.1.1 Filtering, Interpolation, & Smoothing

Some pre-processing of the data common in many SR techniques enables improved

localization of the microbubbles. First, SVD filters are applied to remove the most
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slowly changing (i.e., signal due to scattering from tissue) and most quickly changing

(i.e., pixel intensity fluctuations due to noise) from the image stack. The details of the

filter itself are elaborated in Appendix C.

Next, the maximum resolution of a digital image is most basically limited by its

pixel dimensions. As the processing of raw images described in this chapter aims to

improve the image resolution, all raw images must be interpolated such that the new

pixel size is, at most, smaller than the size of the objects whose identification is desired.

The choice of pixel size for an imaging system is motivated by balancing the lower fun-

damental limit on resolution (i.e., that imposed by wavelength, bandwidth, sampling,

noise, etc.) and practical considerations such as the required memory and available

bu�er size (interpolating an image four times requires 16 times as many pixels). Fi-

nally, prior to the peak isolation process, the data are smoothed with a Gaussian filter

with spatial extent on the PSF. This step serves to regularize the intensity variations

in the image and identify the peak regions as discussed in Sec. 5.2.1.2.

5.2.1.2 Morphological Reconstruction

The reconstruction technique proposed herein employs techniques from mathemati-

cal morphology, specifically the dilation. Though generalizable to continuous distri-

butions, its development and motivation for many of its techniques are in the context

of image processing (i.e., on discrete grids). Initially, its fundamental operations were

defined on binary images, though the analysis was subsequently extended to grayscale

images.186 In a manner similar to the convolution operation, the fundamental opera-

tions of morphology employ an image and template, termed a “structuring element”.

For a function f (r) on some region D with template b(r′)†

1. The dilation of f by template b is defined as

( f ⊕ b)(r) = sup
r ′∈D
[ f (r′) + b(r − r′)].

That is, every value of f is replaced with the maximum value of f + b within a

neighborhood defined by local support of b(r′).

2. The erosion of f by template b is defined as

( f 	 b)(r) = inf
r ′∈D
[ f (r′) − b(r − r′)].

†These functions are often discussed in terms of digital images, which take discrete values (e.g., f ∈
[0,255]). However, the formulation for continuous functions extends naturally to discrete-valued data.
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Figure 5.4: Morphological Dilation. (a) A binary image and template
(blue). (b) For each non-zero point, points within the region of the template
are added to the set. (c) The dilated binary image. (d) For a continuous 1D
function, the dilation is its maximum value as weighted by the template (blue
line). (e) The process may be extended to 2D with a 2D template (blue),
and the process may be iterated.

That is, every value of f is replaced with the minimum value of f − b within a

neighborhood defined by b.

The process of dilation is illustrated in Fig. 5.4.

The definition of morphological reconstruction may now be stated. First, denote

as δg( f ) as the dilation of f under g, that is to say

δg( f ) = ( f ⊕ b) ∧ g , (5.2.1)

where ∧ represents the point-wise minimum. Then, write iterated dilations as δ(n)g ( f ),

that is,

δ
(n)
g ( f ) = δg(δg(· · · (δg( f )) · · · ))︸                      ︷︷                      ︸

n times

(5.2.2)

The reconstruction of f from g is then written

ρg( f ) =
∨

n

δ
(n)
g ( f ) , (5.2.3)

where the ∨ notation indicates that the point-wise maximum is taken, and the iteration

is repeated until it stabilizes (i.e., until the output ceases to change upon further

iterations). The reconstruction operation described by Eq. (5.2.3) repeatedly dilates

the grayscale image until it is restricted by the mask.
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In its use for super-resolution, the mask is defined as a scaled version of the original

image. As suggested by Vincent,187 the subtraction of the reconstructed signal from

the original results in easily segmented peak regions (or “h-domes”) representing local

maxima. The chief advantage of this technique is that the resulting local domes will

have comparable amplitudes in the reconstructed image, even when their amplitudes

in the original image are quite di�erent; see Fig. 5.5. However, information about the

size (i.e., spatial extent) of the intensity peak is retained in the reconstructed image;

see Sec. 5.2.1.4.

Figure 5.5: Peak regions (“h-domes”) found via morphological reconstruc-
tions with a shifted version of the image intensity. Intensity distribution (top)
and resulting peak regions (bottom) for (a) 1D, and (b) 2D intensity distri-
butions. Distributions were taken to have peak intensity of unity, and mor-
phological o�set h = 0.1 was used.

5.2.1.3 Super-Localization

While the MR technique described in Sec. 5.2.1.2 identifies peak regions within the

ultrasound image, it remains to identify the peak location. While the location of the

peak intensity or centroid of the region are reasonable choices, the notion that an

isolated point scatterer will appear as the PSF in the image suggests that knowledge

of the PSF should be exploited. Here, once the peak regions have been identified, the

PSF of the system is cross-correlated with each peak region. The maximum value of

this convolution identifies the best agreement between the observed in the image, and

that expected for a point source, and therefore the most likely position of the scatterer.

This method produced the smallest axial error in a systematic study, unless detection

of the scattering event from the time series data is possible.188
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Figure 5.6: Super-resolution ultrasound with morphological reconstruc-
tion (a) Contrast-enhanced ultrasound (CEUS) were acquired with ultra-
fast plane wave imaging. (b) Singular value decomposition (SVD) filtering
di�erentiates tissue from flowing contrast agents. (c) Morphological recon-
struction with the intensity from the filtered frames scaled by (1 − h) as the
mask enables isolation of peak regions, and convolution with the PSF iden-
tifies super-localized (SL) points (blue dots). (d) Accumulation of SL point
locations from all frames and (e) superimposed Gaussian profiles centered
at these locations produces the super-resolution image.

5.2.1.4 Are Peaks Single Bubbles?

Typically, low bubble concentrations are used for super-resolution processes to ensure

spatial separation of the scatterers and thus enable isolation of individual scatterers.

However, simultaneous optical microscopy has suggested that there are many more

microbubbles in the field of view than are detected by super-localization algorithms.189

It is further possible that a small cloud (less than 10) bubbles, which is still smaller

than the wavelength, will appear in the images as a point scatterer, and thus will be

localized as a single bubble.

Figure 5.7 demonstrates the e�ect of the raw peak amplitudes and extents on the

amplitudes and sizes of the peak regions obtained by the morphological reconstruc-

tion. A one-dimensional “image” which comprises superimposed Gaussian signals of

constant standard deviation ς/2, but with di�ering amplitudes is shown in blue in

Fig. 5.7(b). The morphological reconstructions of the image with the indicated o�sets

are shown (shifted down for visibility). Figure 5.7(c) shows that, as the amplitude of

the raw peak A is increased, the size of the peak region decreases slightly, but in all

cases have size on the order of ς. Thus, if all peaks have the same standard deviation

(i.e., have area the size of the PSF), the size of the peak regions in the reconstructed
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Figure 5.7: (a) Meaning of variables for the signal (blue) and its recon-
struction (green). (b) Raw intensity distribution (blue) and its morpholog-
ical reconstruction for the indicated o�sets. (c) Normalized area of each
peak region in (a) as a function of the raw peak amplitude. (d) Distribution
comprising equal-amplitude Gaussians with increasing standard deviations
(blue) and its reconstruction with o�set h=0.1. (e) Normalized area of the
peak regions as a function of the width ς of the peak in the raw image in
one (black line) and two (gray line) dimensions. (f) Normalized area of the
peak region as a function of the o�set h.

image will be similar, regardless of the amplitude in the raw image. In Fig. 5.7(d),

the amplitudes of the Gaussian peaks are now held constant and the standard devi-

ation is varied. Figure 5.7(e) shows that for larger standard deviations, the size of

the peak region in the reconstructed image becomes significantly larger. This e�ect

is exacerbated in 2 dimensions, where the normalized area of the peak regions grows

as ς2 [gray line in Fig. 5.7(e)]. Thus, peak regions with sizes much larger than the

reference size (here ς; in the case of the bubble images, this is the size of the PSF)

correspond to signals in the raw image that are larger than the reference size. The

size of the peak regions in the reconstructed image might then discriminate between

signal due point scatterers that due to larger structures. Finally, Fig. 5.7(f) confirms

that the size of the intensity peak dominates the size of the peak region in the MR.

As the o�set h is increased, the size of the resulting peak region grows modestly, but

for all o�sets has similar order to the size of the original peak (i.e., ς). Thus while the

size of the peak regions obtained with MR will give good evidence that the size of the

scatterer is at most a wavelength, further evidence was also sought from comparison

with other imaging modalities. For the case of the ex ovo embryo data (see Sec. 5.3.3),

optical micrsocopy data of the same vasculature was available. In this case, the final

SR images were registered to the optical data, and a binary mask created from the op-
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Figure 5.8: Optical Data Registration (a) Optical microscopy images
were registered with (b) the super-resolution image created from the super-
localized points. (c) The Registered data were then thresholded (d) to create
a binary mask. (e) The SL points may be considered successful (if within
some tolerance δ of the vessel) or spurious (if they are outside, red x’s).

tical data (Fig. 5.8). Then, the super-localized points could be compared to this mask,

and the fraction of points that were localized within the identified vessels could be de-

termined. Optical data were registered using matlab’s image processing tools: First,

imadjust was applied to even the image contrast, and imregister to find the opti-

mal translation, rotation, and scaling for alignment. Finally, a threshold binarization

(imbinarize) was performed, and small regions identified as noise removed through

morphological closure (imclose) with an empirically determined neighborhood. As

the registration was imperfect, a small (tens of microns) tolerance δ was defined,

such that SL that were outside the mask, but within δ of the mask, were counted as

true bubble localizations. Comparison of the number of true (i.e., within the vessel)

and spurious localizations will give indication of whether the localizations are indeed

bubbles—or at least some subwavelength scatterer within the vasculature.

5.2.2 Vessel Quanti�cation

The repeated localization of sources yields a point cloud that will resemble the ves-

sel’s shape and thickness. Conventionally, a Gaussian intensity distributions (with

variances on the order of the point spread function) are summed to form a composite

SR image, from which, e.g., vessel diameters may extracted with image processing

techniques. However, the distribution of points themselves may also provide analyti-

cal information about the vessel size and structure, and thus potentially diagnostically

relevant information. In this section, a local projection and segmentation technique is

proposed for the automatic quantification of the vasculature.
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Figure 5.9: Process for vessel characterization from the super-localized
points. (a) Once the points for the super-resolved image have been found
(as in Fig. 5.6), (b) a weighted local regression is calculated from the points
within distance H of each point. (c) The distribution of the distances from
this regression is taken to be proportional to the vessel diameter. (d) In this
way, a point-wise diameter estimation is obtained directly from the super-
localized points.

5.2.2.1 Local Projection

First, local projection was used to identify the vessel center. For each super-resolved

point, a local linear regression is computed from all points within distance H with

Gaussian-weighting. Once the local regression was computed, the super-resolved peaks

may be projected onto this best fit line; see Fig. 5.9(a–b). This process may be iterated

to further collapse the points onto a single line, an estimation of the vessel’s center. In

three dimensions, points may be projected onto the principal direction (i.e., a line par-

allel to the eigenvector associated with the largest singular value) with no weighting,

as general solution of the weighted regression is not available.190

In cases closely spaced vessels (on the order of the vessel diameter), it is necessary

to include in the regression calculation only points which are associated with the same

vessel. Otherwise, points from nearby vessels will be included in the local regression

and subsequently projected into the region between vessels (Fig. 5.10 left column). If

however, as suggested by Lee,191 a Euclidean minimum spanning tree (EMST) may

provide an estimate the connectivity of the point cloud.192,193 The EMST is the graph

connecting a set of points such that all points are connected, and the total length of

the edges, defined as the Euclidean distance between points, is minimized. Since the

edges of this In this way, separate vessels are segmented by removing any edge whose

length exceeds a threshold number of standard deviations from the mean edge length

of the EMST. With knowledge of this segmentation, only connected points, i.e., those

within the same vessel, are included in the projection (Fig. 5.10 right column).
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Figure 5.10: Local projection of super-localized points without (left col-
umn) and with (right column) use of the EMST. For closely spaced vessels
(top row) the local regression may inclide points from adjacent vessels (mid-
dle row). Segmentation by deleteing the longest edges of the EMST alleviates
this problem.

5.2.2.2 Minimum Spanning Tree

While the details of the EMST calculation are not of central interest, an outline of

its calculation in this context merits some consideration. First, each of the N super-

localized points is treated as a graph vertex, edges are drawn between each, and

the distance between nodes is set as the weight of that edge. the complete graph

(i.e., edges connect each vertex to every other vertex) will have N(N − 1)/2 edges.

To reduce the number of edges that must be checked, common implementations fist

find the Delaunay triangulation of the points [Fig. 5.11(b)]. Since this triangulation is

guaranteed to contain the nearest-neighbor graph (i.e., the set of edges that connects

each vertex along its lowest-weighted edge), this smaller subset graph may be searched.

Prim’s algorithm192 then performs the following steps to find the EMST:

1. Initialize EMST at an arbitrary starting vertex T = {V0} [Fig. 5.11(c.i)].

2. Find the lowest weight edge Emin connected to any vertex in E .

3. Add the new vertex Vmin connected to Emin to T [Fig. 5.11(c.ii)].

4. Repeat steps 2 and 3 until the tree T has N − 1 edges [Fig. 5.11(c.iii–iv)].
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Figure 5.11: Illustration of Prim’s algorithm. (a) The set of is super-
localized points. (b) The Delaunay triangulation is used to find the starting
graph (note the gray dashed line, which is part of the complete graph, is
excluded). (c) The EMST is initialized and shortest possible edge added
each time.

5.2.2.3 Velocity Estimation

To estimate the velocity of the individual peaks as a proxy for the blood flow, a simple

pairing algorithm was employed. For each super-localized peak in frame N , the peak

with its nearest-neighbor in the subsequent frame N +1 was determined with a simple

nearest-neighbor search.194 In cases where two peaks were associated with a single

peak in another frame, the shortest path was retained. The velocity was then defined

as

v(r i) =
rn+1

i − rn
i

∆t
, (5.2.4)

where rn
i is the position of the super-localized point i in frame N , and ∆t = 2 ms was

the time between frames.

5.3 Simulations and Experiments

This section describes the experimental data obtained with both passive and active

acoustic imaging modalities, and simulated data for passive imaging to verify the

e�cacy of the morphological reconstruction and local projection algorithms.

5.3.1 PAM Experiments

A vessel-mimicking bifurcation was prepared by joining two polyethylene tubes with

inner diameter 280 µm and separating them to form a bifurcation. Optison microbub-

bles (GE Healthcare, Chicago, IL, USA) were diluted to approximately 200 bubbles/µL

in a stirred beaker, and continuously drawn through the phantom with a syringe pump

during the experiments. A 256-element linear array transducer (GE L3-12D) was po-

sitioned in the plane of the vessel phantom (parallel to the bifurcation). The array

was connected to a research ultrasound system (Verasonics, Kirkland, WA, USA) pro-
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Figure 5.12: Setup for PAM super-resolution experiments. A central work-
station scanned the focal position of the transducer over a 2D grid contain-
ing the vessel phantom, through which bubbles were flowed by the syringe
pump. The signal generator triggered the Verasonics system, which recorded
the bubble emissions through the imaging probe and saved the data for post-
processing.

grammed to operate in passive mode (center 128 channels) to record microbubble

emissions. The setup is shown in Fig. 5.12.

To ensure that the nonlinear emissions from the bubbles were free of nonlinear ar-

tifacts originating from the excitation pulse, we employed a focused ultrasound (FUS)

transducer (custom built, center frequency 1.662MHz; curvature 30mm and diameter

40mm). The transducer was focused on an air-filled tube submerged in a water tank by

maximizing the echo recorded by a pulser-receiver (Olympus, Waltham, MA, USA),

and then scanned in a plane parallel to the plane of the vessel phantom with a 3D posi-

tioning system (Velmex, Bloomfield, NY. The FUS excitation signal (sinusoidal, center

frequency 1.662MHz; pulse duration 30 µs; focal amplitude 450 kPa) was coded on an

arbitrary waveform generator and amplified by a 43 dB (Mini-Circuits, Brooklyn, NY,

USA) amplifier connected to the FUS transducer. Pulse repetition frequencies up to 20

Hz were used (except when the transducer was re-positioned), and the microbubble

emissions were recorded during the excitation pulse. All hardware was synchronized

and controlled with MATLAB, and the focal pressure was determined via measure-

ment with a calibrated a hydrophone (Onda, Sunnyvale, CA, USA) with a reported

uncertainty of 10 % in the frequency range of the excitation.
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5.3.2 PAM Simulations

Acoustic simulations were performed in MATLAB using k-Wave23 including linear

acoustic propagation e�ects. First, a binary map was created from a trace the B-mode

image of the vessel phantom used for the experiment, or of a shape designed to test

the e�ects of the algorithm. Source locations were then defined randomly within the

binary region, with a minimum separation of 4mm to ensure spatial separation in

the PAMs—i.e., that their resulting point spread functions did not overlap. At each

source location, the pressure was specified to be the time series pressure radiated by

a bubble with radial time series R(t)130

prad =
ρ0

r

(
R ÜR + 2R2

)
, (5.3.1)

where dots denote time derivatives (i.e., ÛR = dR/dt). For the simulation, the prad

was evaluated at r = 100 µm, corresponding to the discretized spatial step in the

simulation.

Each bubble’s radial time series R(t) was computed from the large-amplitude bub-

ble model due to Marmottant et al.126 This model augments Rayleigh–Plesset type

models that bubble shell e�ects195,196 by specifying a radially-dependent surface ten-

sion to capture the buckling of the bubble shell. Specifically, R(t) was found by solving

ρ0

(
R ÜR +

3

2
R2

)
=

[
p0 +

2σ(R0)

R0

] (
R
R0

)−3κ (
1 −

3κ

c0

ÛR
)

− p0 − 2
σ(R)

R
− 4

µ0 ÛR
R
− 4

κs ÛR
R2
− pinc . (5.3.2)

In Eq. (5.3.2), c0, ρ0, p0, and µ0 are the sound speed, density, ambient pressure, and

viscosity of the surrounding fluid (water) respectively. The radius-dependent surface

tension σ is given by an ad hoc law of the form

σ =


0 R < Rb

χ
[
(R/Rb)

2 − 1
]

R ∈ [Rb,Rr]

σ0 R > Rr ,

(5.3.3)

where Rb is the radius below which the shell will buckle, and Rr is the radius above

which the shell will rupture (i.e., there will be contact between the gas core and

surrounding liquid. The parameters used are listed in Table 5.1 Bubble properties

were estimated for Optison bubbles based on data measured for Definity197 and
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Table 5.1: Parameters used in Eqs. (5.3.2) and (5.3.3).

Symbol Parameter Value
R0 Equilibrium Bubble Radius 2.8 µm
κs Surface Dilatational Viscosity 15 × 10−9 N
χ Linear Elastic Modulus 0.55N/m
Rb Buckling Radius R0

Rr Rupturing Radius 1.01R0

p0 Equilibrium Pressure 1.01 × 105 Pa
c0 Liquid Speed of Sound 1500m/s
ρ0 Liquid Density 1000 kg/m3

µ0 Liquid Viscosity 1mPa s
σ0 Reference Surface Tension 7.28mN/m
‖pinc‖ Applied Pressure Amplitude 450 kPa

Sonovue.126 The applied pressure field was taken to be a 20-cycle windowed sine

pulse at 1.662MHz (as used in the experiments). The simulated resulting pressure

field was then recorded at locations corresponding to the position and dimensions of

the ultrasound array used during the experiment.

Figure 5.13: At left are time series of the applied pressure resulting normal-
ized bubble radius from Eq. (5.3.2), and radiated pressure from the bubble,
relative to the applied pressure magnitude from Eq. (5.3.1). At right are
the spectra of the incident and radiated pressures, showing the harmonic
generation due to the nonlinearity of the oscillations.

For the three-dimensional simulations, a 64-by-64 element virtual 2D array with

500 µm pitch was defined to record the simulated pressure field. Point sources at 1MHz

were randomly simulated within a vessel phantom and helix shape. The lower frequen-

cies and larger dimensions were used to enable use of a coarser simulation grid, and

reduction of the required computational resources.
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5.3.3 Ex ovo Embryo Model

To test the performance of the SR algorithm with realistic vasculature, CEUS images

were collected of vasculature in the chorioallantoic membrane (CAM) of chicken em-

bryos. Additionally, data were taken from renal cell carcinoma xenograft models that

were grown in the CAM of chicken embryos. Full details of the model preparation can

be found in Refs. 198 and 199. This model is attractive due to the long microbubble

recirculation times, small bulk tissue motions, the availability of healthy and aberrant

tumor vasculature, and the ability to directly compare the US images with high resolu-

tion optical microscopy images of the vasculature. A bolus injection of microbubbles

(Lumason, Bracco Diagnostics Inc., Monroe Township, NJ) at 1.8× 109 microbubbles

per milliliter, and imaging acquisitions were performed at the microbubble concen-

tration plateau after the injection.

Contrast enhanced ultrasound (CEUS) images were obtained with a research ultra-

sound system (Verasonics) with a 25MHz linear array transducer (L35-16vX, Verason-

ics). Ultrafast plane wave imaging (15 angles, −7° to 7°) was performed at 500 frames

per second at a frame rate with 5V transmit excitation. At each location, 5 successive

acquisitions of 720 frames each (total acquisition length 3600 frames over 7.2 seconds).

The IQ data were stored and post-processed with customMATLAB (MathWorks, Nat-

ick, MA, USA) scripts on a standard desktop computer (4 cores at 2.8 GHz, 16 GB

of memory).

For the chicken embryo model, optical microscopy of the healthy vasculature was

also available. Thus in this case to determine the accuracy and quality of the peaks

found via MR, the final SR image (i.e., the intensity field due to the summed Gaussian

distributions at each SR peak location) was registered with an optical microscopy

image of the vasculature (via MATLAB’s imregister). From the registered optical

data, a binary mask was created as a reference standard, such that SR points in the

acoustic image within the mask are considered true positives, i.e., they fall within

the vasculature and may be considered microbubble localizations. As the registration

is imperfect, a tolerance distance δ was defined such that if the SL points were less

than δ from the vessel mask, they were considered successful localizations. Finally,

knowledge of the mask area and size of the imaging wavelength were used to estimate

the upper bound on the number of bubbles that could be localized (i.e., the area of

the vessel mask divided by the size of a square wavelength).
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Figure 5.14: Simulation verification of super-resolution with PAM.
(a) Super-localized points (gray points) and locally-projected points (green
crosses) compared with the region in which sources were located in the sim-
ulation (gray region). Inset shows enlarged region indicated by dashed box,
and colorscale indicates estimation from width algorithm. Plotted in blue
is the point spread function of the system. (b) Super-localized points and
locally-projected points (green crosses) from the experiment, overayed with
the B-mode image of the vessel phantom (grayscale). (c)Conventional super-
resolution image formed from the super-localized points in (a).

5.4 Results

5.4.1 Passive Acoustic Mapping

First evaluated were images of acoustic cavitation formed via PAM. The homogeneous

ASA [i.e., Eq. (4.2.5)] was used to form the maps, as the experiments and simulations

were in a uniform water environment.

5.4.1.1 Experimental Veri�cation

Figure 5.14 shows the result of a validation experiment shown in Fig. 5.12 compared

to the simulation. In Fig. 5.14(a), the vessel characteristics were recovered from the

localizations computed from the simulated emissions of 326 bubbles. The diameter es-

timation tracked well with the true values well left and right of the bifurcation (1mm

to the left and 280 µm to the right), though the estimation was less accurate near-

est the bifurcation. Notably, the projected points fell within the vessel region (inset),

significantly below the point spread function of the system (300 µm, blue). For the

experiment, 559 bubbles were isolated within the PAMs. In both the simulation and

experiment, the vessel phantom centerline was reasonably well identified. As there

were few, high-amplitude peaks in each image, relatively large morphological o�sets

were used: h = 0.2 for the simulation case [Fig. 5.14(a)], and h = 0.6 for the experi-

mental case [Fig. 5.14(b)]. These results indicate that vessel morphology is recoverable

from relatively small numbers of points for which the conventionally formed SR im-
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age, (i.e., a Gaussian distribution with standard deviation λ/4 was centered at each

SL peak) shown in Fig. 5.14(c), provides a comparable level of qualitative detail. The

high CNR (89 dB) of the SR image is expected to persist for more realistic tissue

environments, as the harmonic radiation of the bubbles from which the PAMs are

formed is not subject to linear scattering of the excitation pulse. As the simulations

are now validated, the performance of the algorithm on other vessel geometries was

next investigated.

5.4.1.2 2D Simulations

To assess the performance of the algorithm on a vessel of continuously variable

diameter—e.g., as in the case of an aneurysms200—a “bulb” shaped region was de-

fined, and sources were randomly distributed therein. Figure 5.15 demonstrates the

(a)

0.5 3.5
[mm]

Estimated Diameter
SL Points

SR Image

1 cm

Vessel Region

Local Projection

(b) (c)

Figure 5.15: (a) From the received (simulated) bubble signals, MR iden-
tified the cloud of super-localized peaks (blue) compared with the vessel
region (gray). (b) Local projection of the super-localized points identifies
the centerline (green), as well as recovers the vessel diameter (colorscale).
(c) Conventioally formed super-resolution image from the super-lolalized
points in (a).

ability of the MR to isolate sources within a vessel and to define its shape, a ves-

sel region was defined [gray region in Fig. 5.15(a)], and 806 bubbles were simulated

within the it. Using MR with an o�set of h = 0.2, these sources (up to 4 per frame)

were super-localized. Compared to the true region, all sources were successfully local-

ized to within tens of microns. To assess the ability of the local projection algorithm

to recover the vascular structure and dimension, following beamforming and super-

localization, a local projection was performed with a fixed neighborhood of H = 5 mm

[Fig. 5.15(b)]. Finally, Fig. 5.15(c) shows the SR images for bulb shape. While the in-

dividual localizations are still apparent in the composite images, these were formed

with just a few hundred localizations, compared with the tens of thousands used in

typical SR images,15 and the contrast was very high (196 dB for the bulb).
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Figure 5.16: Super-resolved PAM for trans-skull propagation. (a) Position
of vessel region in simulations; enlarged area in (b–c) indicated by red
rectangle. (b) Super-resolution image of the vessel without the correction.
(c) Super-resolution image of the vessel with the HASA correction. (d) Com-
posite PAM without super-resolution.

To demonstrate the relevance to trans-skull applications, data from the vessel simu-

lations described in Sec. 4.3.1 were compiled as in standard super-resolution imaging.

Figure 5.16 demonstrates the importance of both super-resolution and the improve-

ment in localization accuracy quantified in Chap. 4. For the transcranial vessel in

which 150 sources at 1.2MHz were simulated in a vessel region [Fig. 5.16(a)], lack of

correction yields an intensity distribution [Figure 5.16(b)] that is distorted and di�er-

ent from the true vessel shape (dashed white line). When the correction is applied

[Fig. 5.16(c)], the vessel shape and size is recovered; the size of the vessel from the

indicated intensity profile was estimated at 1.7mm, compared with the true width of

1.5mm, and a width estimateion from the local projection algorithm (with H = 2 mm)

of 2.1mm. In the composite PAM [i.e., summation of each individual PAM from all

150 simulations Fig. 5.16(d)], the intensity profile at the same location had with of

over 5mm, indicating an e�ective improvement in resolution of 60 %. It should be

emphasized here that these results were obtained with only 150 localizations, a small

fraction of those used in typical demonstrations of microvessel mapping.166
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Figure 5.17: 3D PAM Super-resolution results. (a) 3 dB–volume of the
simulated bifurcation phantom compared with its true location. (b) Super-
resolved (blue) and locally projected (green) points. (c) 3 dB–volume of 3D
PAMs for a simulated 1 mm diameter spiral. (d) Super-resolved (blue) and
locally projected (green) points.

5.4.1.3 3D Simulations

Figure 5.17 shows the improvement imparted by the MR peak finding and subse-

quent local projection of passively-localized point sources from the 3D simulations.

Figure 5.17(a) and (c) show the 3 dB volume obtained from a composite map formed

from all localizations for the vessel bifurcation and helix-shaped region, respectively.

While the general shapes of these components is somewhat recognizable, the blur of

the PSF is on the order of a centimeter, rendering the resolution quite poor. However,

the the super-localized peaks are projected onto their local regressions, the morphol-

ogy of the shape is readily apparent. Collectively, the experimentally-validated simula-

tion results presented in this section demonstrate that the morphological reconstruc-

tion technique for peak identification, augmented by the local projection algorithm

and HASA correction, enable identification of vascular structure through the skull

and below the conventional di�raction limit.

5.4.2 Ex Ovo Data

To examine the ability of the SR methods with smaller and denser vasculature of

typical interest in active imaging methods, data from the ex ovo embryo model were

next considered.
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Figure 5.18: Comparison of imaging methods (a) Super-resolution image
from super-localized points. (b) Maximum intensity projection (MIP) of the
CEUS image stack (c) Registered optical microscopy image (d) Image in-
tensity profiles for the indicated profiles in (a).

5.4.2.1 Image Quality

Figure 5.18 demonstrates the relative image quality of the SR image generated with

the points localized with MR. In Fig. 5.18(a) is the SR image built from the peaks

obtained via MR with h= 0.050. The image resolution is significantly better than that

obtained from a maximum intensity projection of the CEUS stack [Fig. Fig. 5.18(b)]

and is comparable to that of the optical image [Fig. 5.18(c)]. The intensity profiles

shown in Fig. 5.18(d) for the indicated lines in Fig. 5.18(a) show that bifurcations

with separations as small as 45 µm may be imaged (profile 1), and sub-vessel detail

for vessels as small as 20 µm are identifiable (profile 4). These details, which are not

visible in the CEUS image [gray lines in Fig. 5.18(d)], are resolved with high contrast

in the SR image. Thus, the peaks identified with MR may generate SR images with

resolution significantly better than that of the raw CEUS images and comparable to

that of optical microscopy.

To ensure that the additional peaks detected were not spurious localizations, the

contrast in the resulting SR images was evaluated (Fig. 5.19). For the smallest o�set

(h = 0.025), the CNR was lower than the contrast in the non-MR images (i.e., the

image formed with only thresholded peaks), likely due to some spurious localizations

contributing to background noise. However, for larger o�sets (h = 0.050), the CNR

was quite high and exceeded that of the non-MR images. This is because the MR was

able to identify many more peaks in the smaller vessels, resulting in stronger signal

as compared to the same positions in the non-MR images [Fig. 5.19(e)].
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Figure 5.19: Super-resolution images from super-localized points with
(a) h = 0.025, (b) h = 0.050, (c) h = 0.075, and (d) without MR (i.e.,
thresholded peaks) (e) CNRs for the for the given o�set at the points (col-
ored circles) and background region (white boxes) indicated in (a–d), com-
pared with mean over all points (black line). CNRs of the images at the
same locations formed with noise added to CEUS images prior to peak find-
ing (f) Without MR, and (g) with h = 0.50.

To demonstrate the robustness of the resultant images to measurement noise, the

CNR for images formed with h = 0.05, over the same vessel and background locations.

Figure 5.19(f–g) demonstrate that while the addition of noise (resulting in a mean

CNR in the maximum intensity projection of the raw image stack if 3.6±10.0 dB

over the same locations) to the CEUS frames decreases the CNR of the output SR

image, the contrast between vessels is consistent across all locations and remains

positive [Fig. 5.19(f)]. However, without MR, some smaller vessels have poor contrast

[Figure 5.19(e)], which give vanishing CNRs and subsequently wide variability in the

image contrast between di�erent size vessels.

5.4.2.2 Accuracy and Sensitivity

After demonstrating that MR can be used for peak detection in SR-US imaging frame-

work, the robustness and accuracy of the super-localized peaks were evaluated. First,

the co-registered optical microscopy mask was taken as a ground truth, and compared

the super-localized peak locations obtained from the MR process. Peaks whose super-

localized position lay within the vessel region (i.e., at pixels where the mask had value

1) were labeled as within the vessel (i.e. true peaks), and those with positions out-

side the vessel otherwise (i.e. false peaks). Figure 5.20 shows the relative positions of

the super-localized points from all datasets with h = 0.025, compared with registered

mask derived from the optical data. While the points fall largely within the vessel (as

in panel 3), in locations such as panel 2 the shape created by the super-localized point

cloud resembles the nearby vessel, but with a small shift in position due to imperfect

registration. However, some other peaks, especially at higher sensitivities, resembled
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Figure 5.20: Relative position of the optically derived vascular mask, and
the super-localized points with h = 0.025. Inset 1 shows spurious localiza-
tions outside the vasculature that likely represent noise. Inset 2 illustrates the
tolerance (here δ = 50 µm) due to imperfect registration. Inset 3 higlights a
region of good registration between the optical and SR images.

noise (as in panel 1).

To account for the imperfect registration, a tolerance δ was defined as the per-

pendicular distance to the vessel map, as in Fig. 5.20. Figure 5.21 demonstrates that

without MR, 20.5 ± 3.4 peaks were detected in each frame, with 89.6 % located within

the vessel mask. With a tolerance of 20 µm, this increases to 95.7 % were within the

vessel, and if a 50 µm tolerance is allowed, then 98.6 % were labeled as within the ves-

sel. Thus peaks found per frame via MR were approximately two to three times as

many as the case when no MR was used (i.e., simple thresholding): for an o�set h =

0.075, 38.8 ± 4.6, for h = 0.050, 49.1 ± 4.8, and for h = 0.025, 66.2 ± 5.3.

The larger number of peaks detected due to the increased sensitivity (h = 0.025)

came at the cost of slightly lower accuracy than the non-MR case; for instance, the

h = 0.025 had a lower bound (δ = 0 µm) of 69.7 % localized within the vessel. However,

given the imperfect registration, for even a small tolerance of 20 µm labeled 86 % of

these localizations is within the vessel.

The higher sensitivity o�ered by MR compared to thresholding is especially im-

portant in the smallest vessels—where super-resolution methods are of the greatest

interest . Figure 5.22 shows the number of peaks localized from the first 720 frames

(1.2 s) of data for several vessels and with di�erent o�sets h. In the smallest vessels
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Figure 5.21: Mean (dot) and standard deviation (bars) of the number of
peaks found per frame for the indicated o�set (or without MR in black) and
the corresponding accuracy (i.e., percent within the vessel mask defined
from the optical data). Marker type indicates tolerance δ used to determine
accuracy.

Figure 5.22: Peaks detected over time. (a) Optical microscopy image of
CAM vasculature. (b) Illustration of morphological o�sets used (not to
scale), compared with the simple thresholded case. (c) Peaks detected as a
function of time/frame number for the 33 µm diameter vessel [shape shown
in gray, region 1 in (a)] and the indicated o�set h. (d) Peaks detected for
region 2, (e) region 3, and (f) region 4.

[d1 = 33 µm, Fig. 5.22(c) and d2 = 49 µm, Fig. 5.22(d)], no peaks were detected via

thresholding (i.e., without MR). However, tens to hundreds of peaks were identified

via MR, with more peaks isolated for lower o�sets (higher sensitivity). For larger ves-

sels, thresholding identified more bubbles, though still the number of localizations

was significantly fewer than the number identified with MR.
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Figure 5.23: Velocity calculations with MR points. (a) Each peak in frame
N is paired with the closest peak in frame N + 1 (with the only the closest
pair retained in the case of uneven numbers). (b) The resulting velocity mag-
nitudes and (c) direction indicate recovery of reasonable values. (d) Flow
profiles from the indicated positions in (b) demonstrate an maximum flow
near the center with peak flow that trends with vessel diameter.

Velocity Estimation While estimation of flow from the super-localized points is a

rich topic itself,177,201,202 of interest here is validation that the super-localized peaks

found from MR are indeed bubbles, or at least, flowing sub-wavelength scatterers†

Figure 5.23 shows the velocity recovered from the points found via MR with the sim-

ple frame-to-frame pairing algorithm [Eq. (5.2.4)]. While ground truth is not avail-

able in the way that location data were, the magnitude of the computed velocities,

around 1 cm/s, is consistent with those found via Doppler imaging and more sophis-

ticated tracking algorithms. Additionally, the overall direction of the calculated flow

[Fig. 5.23(c)] and profile across the vessels [Fig. 5.23(d)] jibe with expectations of the

vessel morphology. Together, these velocity findings support that the super-localized

peaks are indeed sub-wavelength acoustic scatterers that may be used to infer the

shape and perfusion within the vasculature.

5.4.3 Computational E�ciency

The computation time required per frame of the MR peak finding algorithm will de-

pend largely on the frame size, interplation, morphological o�set, and specific dataset.

As a test case the computation time per frame as a function of the interpolation, for

a 1 mm by 1 mm region from the CAM dataset is shown in Fig. 5.24(a) (times do

not include SVD filtering, which required 6.6 s for each 720 frame stack). Smaller o�-

set cases required slightly longer processing times (e.g., 18.9 ± 4.0ms vs 16.6 ± 2.8ms

†Without, e.g., concurrent optical imaging,189 it may only be established that the super-localized points
represent scatterers smaller than the PSF. That is, the di�raction limit for a single image is undefeated.
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Figure 5.24: Computational E�ciency (a) Computation time required per
frame as a function of the image interpolation for a subset of the CAM
dataset for morphological o�sets of h = 0.025, 0.050, and 0.075. The size
of the markers indicates the mean number of peaks isoalted within each
frame. (b) Computation time required for the local projection algorithm
for the indicated number of randomly-generated peaks. For the blue line, no
EMST was used, while for the remaining lines, the EMST with the indicated
tolerance σ was used.

frame at 4× interpolation for h = 0.025 and h = 0.075, respectively) due to the larger

number of points found in each frame, which increases number of correlations. Peak

finding without MR required slightly less time (10.4 ± 4.0ms per frame), but identi-

fied only 5.2 peaks per 1000 pixels over the same region, compared to 20 in the MR

case. Thus, MR enables a roughly two-fold improvement in the temporal resolution

(defined as the total acquisition and processing time to generate the SR image) for

these data.

For the local projection algorithm, the computational time will be highly dependent

on the number of peaks and their distribution. Figure 5.24(b) shows the computational

time required for the indicated number of randomly distributed peaks in the naive case

(i.e., without the EMST for automated segmentation) as well as cases where EMST

edges longer than the indicated number of standard deviations σ were deleted. While

this process proved somewhat intensive for large numbers of points (computational

time grew faster than proportional to the number of points), the computational burden

increased more slowly than N2. Thus both the MR and local projection algorithms

represent computationally e�cient methods to supplement and improve the super-

resolution imaging workflow.
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5.5 Summary of Contributions

In this chapter, two novel applications of algorithms have been proposed and eval-

uated to improve the e�ective resolution of acoustic images. The first employs mor-

phological image reconstruction, and was demonstrated to improve the peak finding

sensitivity and thus enable better imaging of the smallest vessels. In PAM experi-

ments and simulations, the resolution was improved approximately tenfold over the

free-field di�raction-limited case. In conjunction with the HASA, three-fold improve-

ment in resolution was obtained in trans-skull experiments, underscoring the utility of

the method. In the case of active imaging experiments, the sensitivity was increased

twofold over thresholding methods. Through velocity measurements and comparison

with registered optical microscopy data, the super-localized points were confirmed to

be sub-wavelength scatterers and thus useful markers for super-resolution techniques.

The second method, based on a local projection of the super-localized point cloud

provides automated characterization and segmentation of the musculature with rea-

sonable computational e�ciency.
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Chapter 6

Nonlinear Ultrasound in the Brain

6.1 Introduction

6.1.1 Nonlinear Biomedical Ultrasound

For the first several decades of its use in biomedical applications, it was assumed that

ultrasonic acoustic propagation largely obeyed linear acoustic principles.203,204 How-

ever by the 1980s, the importance of nonlinear acoustic e�ects at clinically relevant

pressures and frequencies became apparent.99,205 Higher order e�ects absent in the

linear regime include the generation of harmonics of the primary frequency,206,207 a

net force on the fluid particles (radiation pressure),208–210 induction of fluid currents

(acoustic streaming),211,212 and generation of gas pockets within the fluid (acoustic

cavitation†).213,214

Of particular interest herein is the nonlinear interaction of two sound beams

with frequencies ω1 and ω2. Termed “scattering of sound by sound”, an implication

of finite amplitude propagation is the existence of sum and di�erence frequencies

ω± = ω1 ± ω2.215,216 Applications for coincident sound beams with slightly di�erent

frequencies—termed parametric arrays—were soon postulated and demonstrated for

highly directional transmitting and receiving arrays, both in water217–220 and air.221,222

Use of these parametric array e�ects for biomedical applications have largely been in

the interest in elastography, wherein the low-frequency acoustic emissions are used to

infer tissue sti�ness.223–225

FUS o�ers an attractive methodology for the localization of mechanical forces,

though typically at megahertz frequency ranges, at which the underlying mechanisms

of neural response are not well understood.226,227 However, through use of the para-

metric array e�ect, it is postulated that low frequency energy may be localized at scales

below its wavelength. This e�ect has been demonstrated with highly directional loud-

†Though the term is conventional in both contexts, use of “cavitation” here is distinct from the phe-
nomena of encapsulated microbubble oscillations discussed previously.
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speakers, wherein high amplitude airborne ultrasound (ca. 50 kHz) is modulated such

that its di�erence frequency is the audible range,228–231 and with phased arrays to cre-

ate subwavelength “sound-spots”.232 Indeed, the pressure at the di�erence frequency

is often written218,228 in terms of the modulating envelope E(t)†

p− ∝ β p2
0

d2E2

dt2
, (6.1.1)

indicating that the di�erence frequency amplitude grows as the square of the primary

signal amplitude p0. Analogous creation of highly-localized energy at biologically rel-

evant frequencies (a few kilohertz) with ultrasound may have significant implications

for new types of therapy and imaging.

6.1.2 Inducing Nonlinear E�ects

Both because nonlinear e�ects require large amplitudes, and because highly localized

regions are of interest, focusing of the acoustic energy is essential. As discussed in

Chap. 3 transcranial focusing is has been of interest for many decades,49,50 but more

recent developments have enabled corrections by applying appropriately phased time

delays,54,82 but determining these delays is fraught: it requires either invasive mea-

surement,55,89–91 or potentially dangerous induced cavitation.84–87 Alternatively, these

delays may be computed via modeling, though such approaches are often quite inten-

sive computationally.7,60,62, 92, 93 As shown in Chaps. 2 and 3, the HASA correction

derived and evaluated in o�ers an e�cient way to calculate these focal delays and

create areas of high amplitude in which the desired nonlinear e�ects might become

important.

In this chapter, the theory of nonlinear sound beams will be briefly reviewed,

for which straightforward analytical methods for highly focused sources in complex

media are elusive. Then, through experimentally validated experiments, the spatial

distribution of the field at the di�erence frequency from focused sources is investigated.

Finally, use of is applied to the transcranial problem and the resulting focal fields

discussed.

†Note that cosω1t + cosω2t = 2 cos (ω−t/2) cos (ω+t/2). Thus the summation of two harmonic signals
may be thought of as a signal at the average frequency ω+/2, modulated by an envelope E(t) =
2 cosω−t/2 at half the di�erence frequency. Then, squaring E(t) in Eq. (6.1.1) yields the di�erence
frequency component, as 2 cos2 ω−t/2 = 1 + cosω−t. While Eq. (6.1.1) is valid for a piston source,
the proportionality to the squared rate of change of the envelope is expected to hold for the case of a
focused ultrasound transducer.
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6.2 Theory and Methods

6.2.1 Nonlinear Acoustic Propagation

The standard methods of deriving the linear wave equation involve first writing the

pressure, particle velocity and density of the fluid as a sum of a constant value and

some perturbation, i.e.,

ptot = p0 + p , utot = u0 + u , and ρtot = ρ0 + ρ , (6.2.1)

Then, it is assumed that these perturbations are small: p/p0 � 1, ρ/ρ0 � 1, and

that u0 = 0 and u/c0 � 1 (where u = |u |). When these expansions are substituted

into the constitutive equations, products of the small values—i.e., “second order”

quantities—will occur (see Sec. B.1). In most acoustic applications, these products

are safely neglected; however, as the amplitude of the field variables becomes large,

retaining these second order quantities becomes necessary to describing the resulting

behavior.233

If these terms are retained, then it can be shown that the resulting second-order

wave equation is (see Sec. B.2)

∇2p −
1

c2
0

∂2p
∂t2︸           ︷︷           ︸

Linear Terms

= −

Loss︷  ︸︸  ︷
δ

c4
0

∂3p
∂t3
−

Nonlinearity︷      ︸︸      ︷
β

ρ0c4
0

∂2p2

∂t2︸                      ︷︷                      ︸
Second Order Terms

, (6.2.2)

where δ is the sound di�usivity, and β is the parameter of nonlinearity. Equation (6.2.2)

is often termed the “Westervelt equation”, and is widely used model for nonlinear

propagation and accounts for for thermoviscous and finite amplitude e�ects. The right

hand side of Eq. (6.2.2) may be viewed as a source term for the linear propagation.

Typically, solutions to Eq. (6.2.2) are di�cult to obtain, so most analytical approaches

employ approximation techniques.

6.2.1.1 Parametric Array

The publication217 in which his eponymous equation [Eq. (6.2.2)] was derived, West-

ervelt principally considered the resulting field when two collimated, coaxial† plane

†While the existence of the di�erence frequency within a sound beam is well-established, the case of
the interaction between two sound beams proved far more controversial.234
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Figure 6.1: Field distribution for a collimated plane wave source in water
with f0 = 1 MHz, f− = 50 kHz and characteristic beam size a = 12.5 mm.
(a) Radiating at 50 kHz, a source of this size is nearly omnidirectional. (b) If
the frequency is achieved as a di�erence frequency via modulation of the
1 MHz primary, the directionality is much higher. (c) Directionality of the
1 MHz primary is highest, but incurs side lobes. Computed from Eq. (2) of
Ref. 235.

waves traveling in the x-direction with high amplitudes and similar frequencies were

generated, i.e., the incident pressure is

pi = p0

[
ei(k1x−ω1t) + ei(k2x−ω2t)

]
e−αx . (6.2.3)

With this as the source term, he then showed that the far field pressure at the di�erence

frequency ω− is

p− = p2
0

eik−r

r
β(k−a)2

8ρ0c2
0

(
1

iα− + k− sin2 θ/2

)
, (6.2.4)

where α− is the attenuation at the di�erence frequency. Thus the pressure radiated

at ω− due to the nonlinear interaction appears like modified spherical wave at the

di�erence frequency: the amplitude depends on the nonlinearity of the medium β, as

well as the size of the aperture relative to the di�erence wavelength k−a. The final term

in parentheses in Eq. (6.2.4) imparts a directivity that depends both on the di�erence

frequency ω−, as well as the attenuation in the medium.

It is important to note that the source of the di�erence frequency is not the ra-

diating source, but rather the sound waves themselves—hence the term “scattering

of sound by sound”. The interaction of the waves gives rise to second-order content

at linear combinations of the harmonics in the source signal. The term “parametric

array” is somewhat misleading; the initial conception involved a linear array radiating

parallel to the line (θ = 90°, or “end-fire”). For the purposes of this chapter, the source

comprises a single, focused transducer or phased array radiating in the perpendicu-
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lar (z) direction as before; the “array” in this case is the interaction region, i.e., the

near-field of the collimated beams.

6.2.1.2 Focused Parametric Sources

Analysis of the di�erence frequency field when source pressures are nonplanar (e.g.,

when the field is shaded or focused) is significantly more involved than in the case

of planar waves. As in many applications of mathematical physics, insight us usually

gained through special cases and approximations. Reference 236 derives an expres-

sion for on-axis and radial fields near the focal plane for ka � 1 (where k is the

wavenumber of the primary frequency and a is the characteristic source dimension)

and F# greater than 1.4. Using the paraxial approximation for a focused source with

focal distance z0, they show that the on axis field may be written

q−(z) = −
βk1k2u2

0

2c0

∫ z

0

∫ a

0

∫ a

0

xy
zz′

J0

(
k1k2xy

k−

[
1

z′
−

1

z

] )
× eik1x2 z̄/2 eik2y2 z̄/2 exp

[
−ik1k2(x2 + y2)

2k−

(
1

z′
−

1

z

)]
dx dy dz′ , (6.2.5)

where z̄ = (z−1 − z−1
0 ). The pressure field is recovered from the velocity potential,

φ(z) = q−(z)eik−z. Then, noting that the field is symmetric about r = 0, a the field near

the focal plane (z/z0 ≈ 1) may be approximated

q(z,r) ' q(z,0) +
r2

2

∂2q
∂r2

�����
r=0

+ . . . , (6.2.6)

allowing an estimation of the beamwidth.

Figure 6.2 plots the predicted fields at several di�erence frequencies f−, for a pri-

mary frequency of f0 = 1 MHz. Plotted for reference are the expected axial fields

from the same transducer for primary radiation at f0 = 1 MHz and f0 = 200 kHz. As

expected, the energy is significantly more spatially consolidated at the di�erence fre-

queny. For instance, the beamwidth for primary radiation at 200 kHz is on the order

of 5 cm, whereas if the 200 kHz field is generated by a combination of f1 = 1.1 MHz

and f2 = 0.9 MHz, then the beamwidth at the focus is on the oder of 8mm.

Thus, while theoretical developments have addressed the problem of parametric

excitation (i.e., the generation of low frequency fields with much higher primary fre-

quencies) for weakly focused sources in homogeneous media, the problem of clinical

relevance involves the highly heterogeneous acoustic domain presented by the skull, as
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Figure 6.2: Top: Comparison of theoretical normalized axial fields for a
circular focused transducer with center frequency f0 = 1 MHz at the indi-
cated di�erence frequency. Computed from Eq. (6.2.5). Transducer size was
a = 5 cm with focal distance 20 cm. Bottom: 3 dB widths for the di�erence
frequency, compared with approximate focal spot sizes in the linear case.

well as F#on the order of unity. To address more completely the problem of nonlinear

e�ects in the brain, simulation and experimental studies are a necessity.

6.2.2 Experimental Setup

To verify that nonlinear e�ects could be achieved, mapped, focused ultrasound trans-

ducers were used: one custom-built, center frequency 1.73MHz, F#4/3, focal distance

4 cm; one Olympus (Waltham, MA, USA), 1MHz, F#10/9. These transducers were

connected to an arbitrary waveform generator (Keysight, Santa Rosa, CA, USA) and

windowed pulses comprising a single or two superimposed frequencies were applied.

The signals were amplified by a 50 dB amplifier (Electronics & Innovation, Rochester,

NY, USA).

Signals from the transducers were measured by a needle hydrophone (Onda, Sun-

nyvale, CA, USA) whose output was read recorded by a digital oscilloscope (Pico

Technologies, St Neots, UK). Strictly, the di�erence frequencies of interest fell out-

side the hydrophone bandwidth (1–20MHz). However, the expected spectral content

was apparent in the measured waveforms (and at theoretically expected levels), and

thus it was estimated that the sensitivity at these frequencies was within several deci-

bels of the stated bandwidth (−272 dB re 1V/µPa). The hydrophone was attached to

a 3D positioning system (Velmex, Bloomfield, NY USA) to enable scanning of the
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Figure 6.3: Experimental setup for measurement of the level and distribu-
tion of primary and di�erence frequency fields.

field and submerged in a tank of degassed water. Because the di�erence frequencies

of interest were expected to have levels tens of decibels below those of the primary

frequencies, the hydrophone signal was passed through a programmable analog filter

(Krohn-Hite, Brockton, MA, USA) with 40 dB amplification. To record any audible

generation of sonic di�erence frequencies, a digital audio recorder (Zoom, Tokyo,

Japan) was positioned above the water surface, approximately above the hydrophone.

The experimental setup is shown in Fig. 6.3.

6.2.3 Nonlinear Simulations

Evaluation of the proposed fast focal aberration technique and its ability to induce

parametric array e�ects in trans-skull contexts is most flexible with simulations, as the

geometry, material parameters, amplitudes, and frequencies may be varied arbitrar-

ily. However, inclusion of these higher-order e�ects incurs additional computational

expense that is often significant; indeed much of the analytical work in the field is

toward simplifying aspects of the numerical implementation.204

Many applications of interest are concerned with sound beams (such as those

considered in Sec. 6.2.1.2), such that consideration may be restricted to the near-axis

field (i.e., paraxial approximation). In such cases, simplifications enable the governing

equation to be rewritten in a more tractable form; perhaps the most widely used is
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the KZK† equation238,239

∂2p
∂z∂τ

=
c0

2
∇2
⊥p +

δ

2c2
0

∂3p
∂τ3
+
∂2p2

∂τ2
(6.2.7)

where ∇2
⊥ = ∂

2/∂x2+∂2/∂y2 and τ = t− /c0. Equation (6.2.7) accounts for di�raction

and absorption for large amplitude sound beams, and time-domain,240,241 frequency-

domain,24,242 and combined243,244 approaches have been proposed for its evaluation.

However, the built-in assumptions (e.g., the high directionality of the waves and the

assumption of a uniform medium) necessitate more general—if more computationally

expensive—methods.204

More general finite di�erence time domain (FDTD) implementations of Eq. (6.2.2)

o�er full accounting of propagation,245 though as discussed previously, this is at the

cost of high computational expense. Very e�cient forward frequency-domain meth-

ods36,246 are of considerable interest for modeling propagation in tissue, however such

techniques do not account for reflections and require relatively weak heterogeneity.

Pseudo-spectral (or “k-space”) methods,23 which were employed in previous chapters

for linear acoustic propagation may be extended to account for acoustic nonlinear-

ity. The inclusion of nonlinear e�ects and heterogeneity into the discrete equations is

relatively straightforward, e.g., the lossless discrete pressure-density relation is101

pn+1 = c2
0

[
ρn+1 +

B
2A

1

ρ0

(
ρn+1

)2
]

(6.2.8)

where ρn = ρ(r,n∆t), and thus Eq. (6.2.2) may be solved with the same techniques as

were used for heterogeneous media. Additionally, the fractional Laplacian operator

(∇2)y/2, which is used to model power law absorption, benefits from the exceptionally

convenient generalization247 of the derivative theorem (see p. 102)

Fk

[
(−∇2)y/2ρ

]
= k yFk [ ρ ] . (6.2.9)

The simulation framework has demonstrated good agreement with more specialized

approaches, as well as with analytical results101 and experimental measurements.248

This method of calculation enables e�cient (2D simulations on the order of a few min-

utes) prediction of finite amplitude acoustic fields through the skull. Material proper-

ties were assigned in the simulations as described in previous chapters (see Sec. 3.2.3),

†Named for its credited originators Khokhlov & Zabolotskaya, Kuznetsov. As noted in Ref. 237, the
history of this form is as rich as perhaps any named equation, but by convention this name is used
herein.
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however a nonlinearity parameter must also be specified for each position. A thresh-

olding was used to segment the environment into tissue types, and the nonlinearity

parameter β was defined† for each according to249

β(r) =


3.55 c(r) ≤ 1540 m/s

4.45 c(r) ∈ (1540,1700] m/s

0 c(r) > 1700 m/s

. (6.2.10)

While acoustic nonlinearity is not well-characterized for bone, the requirement of dis-

tance for the generation of nonlinear e�ects, as well as the high attenuation of skull

bone, suggests that neglecting the nonlinearity within the skull itself is a reasonable

approximation.250 Finally, while results presented will be normalized, the source pres-

sure in the simulations was set to be 500 kPa unless otherwise noted.

For the trans-skull focusing discussed in Chap. 3, the delays were computed for a

single frequency (the center frequency of the pulse) via Eq. (3.2.5). In the case of a

bi-frequency excitation (from which the di�erence frequency will be generated) these

delays must be calculated for each component. Thus the excitation time series si(t)

for the ith transducer element is

si(t) =
1

2
w(t)

[
A1,i cosω1(t − τ1,i) + A2,i cosω2(t − τ2,i)

]
(6.2.11)

where w(t) is a window function (in this case a Hamming function with width equal

to 100 periods at the fundamental frequency and 10% taper). The delays τn,i and

amplitudes An,i are computed from the HASA field computed at the transducer face

for a delta function at the desired focus nth frequency. Note that this computation now

must be done twice: once for each component frequency. In the uncorrected case, the

conventional geometric delays τ = i/c0 were used.

Finally, since the field levels at relevant frequencies was of interest, the full pressure

time series needed to be recorded as a function of space. Given comparatively long

pulses needed, especially for larger downshift ratios ( f0/ f−) the simulated time series

pressure was saved over a 30mm-by-30mm grid with 1mm spacing. The level at a

particular frequency was then defined as the amplitude of the spectrum of the time

series at that point at that frequency.

†In k-Wave, B/A must be specified, thus this field was assigned as B/A = 2(β − 1).
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Trade-o� of Scales One final compromise merits mentioning here, one that is prac-

tical (rather than a physical) and that a�ects both experimental simulated results in

distinct but related ways. The downshift ratio ( f0/ f−) characterizes the di�erence

in scale of the primary emitted frequencies, and the expected di�erence frequency

generated by the nonlinear interactions. Nominally, very low relative frequencies are

desired (i.e., f0/ f− � 1) such that the high spatial specificity of the primary can be

exploited. In the experimental case, this necessitates very long pulse lengths, as N

cycles at f− requires N( f0/ f−) cycles at the primary frequency. To avoid damage to

the PZT transducer crystal due to heating, duty cycles (that is the ratio of on-time to

o�-time during pulsed excitations) are usually kept to around 1%. Thus, experiments

with long pulses require correspondingly small pulse repetition frequencies, and thus

experimental times are lengthened substantially.

In the case of simulations, the grid must be chosen to support the shortest wave-

lengths due to f1 and f2, and potentially harmonics thereof. However, very large

downshift ratios require the simulation to run for times long enough to capture the

low-frequency energy. Thus the simulations require significantly more time to run;

for instance, a single di�erence frequency simulation of the type whose trends are

reported in Sec. 6.3.3 required approximately 2 hours, even with a relatively high per-

formance workstation (14 cores at 2.2GHz, 64GB memory). Thus the simulations

and experiments reported in this chapter were designed to balance the interest in low

frequency generation and the required durations.

6.3 Results

6.3.1 Experimental Generation of Nonlinear E�ects

Figure 6.4 illustrates the measured di�erence frequency levels and characteristics for

various excitation amplitudes for a downshift ratio of 10. The amplitude increased as

the applied voltage increased, but not in a linear fashion—as the unamplified signal

generator voltage was increased from 150mV to 200mV [green and blue traces in

Fig. 6.4(a), respectively], the peak to peak pressure increased by only 200 kPa, com-

pared with nearly 500 kPa for the increases from 50mV to 100mV (orange and purple,

respectively). This is likely due to generation of harmonics, as the distortion in the

waveforms [Fig. 6.4(b)] is evident as the excitation amplitude becomes larger.

This change in the waveform shape may be correlated with spectra at the focal

point, shown for each applied voltage in Fig. 6.4(c). While the primary frequency

components f1 and f2 are prominent at all levels, the di�erence frequency, as well
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Figure 6.4: Waveforms measured with center frequency 1.73MHz and
downshift ratio of 10. (a) Time series waveforms measured at the focal
point for various input excitations (50, 100, 150, and 200mV peak-to-peak).
(b) Enlarged shaded section from (a) for each excitation level. (c) Spectra
for each excitation level. (d) Axial profiles of the level at the primary ( f1)
and di�erence ( f−) frequencies. Colored dashed lines represent the theoret-
ical normalized profile computed as described in Sec. 6.2.1.2.

as harmonics and other combinations of overtones, become more prevalent at higher

amplitudes. The conversion of energy into these other frequencies alters the shape of

the times series waveform. Considering the level of the di�erence frequency compared

with the primary, Fig. 6.4(d) indicates that higher levels are achieved at the di�erence

frequency for higher amplitudes at the primary. Interestingly, the focal spots are more

confined than predicted by the methods described in Sec. 6.2.1.2 (dashed lines) al-

though they are of lower level (−80 dB re primary vs −60 dB). This may be partly due

to the reduced sensitivity of the hydrophone element at these lower frequencies (sen-

sitivity only reported down to 1MHz), and also due to the fact that the F#of the

transducer was smaller than the theory strictly allows.

Further confirmation of nonlinear acoustic e�ect generation was given by analysis

of audio recorder measurements taken as in Fig. 6.3. Figure 6.5 shows the recorded

audio spectra measured above the tank. The di�erence frequency was varied between

5 kHz and 20 kHz, as well as with varying pulse repetition frequencies to ensure that

the audio was indeed due to the nonlinear interaction and not other audible sounds in
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Figure 6.5: Spectrograms measured by the digital recorder shown in
Fig. 6.3, with f0 = 1 MHz. (a) Normalized spectrogram for f− = 10 kHz
with 2Hz pulse repetition frequency. (b) Normalized spectrogram for f− =
10 kHz with PRF 1Hz. (c) Normalized spectrogram for f− = 15 kHz with
PRF 2Hz.

the lab space.† Indeed, the recorded spectrogram confirms that the generated audio

frequencies are due to radiation with the 1MHz transducer. An order of magnitude

estimation of the audible level (15 dB) suggests the pressure amplitude in the air was

p0 = 20 µPa · 10L/20 ∼ 110 mPa. The water-air interface has a normal incidence plane

wave transmission coe�cient T ≈ 5 × 10−4, thus the level of this component in the

water was on the order of L ≈ 20 log10 (p0/T)/1 µPa ∼ 165 dB re 1 µPa. The level in

the tank at the di�erence frequency is thus substantial, even well outside the focal

region.

6.3.2 Experimental Veri�cation

To ensure that conclusions reached through the simulation study were reasonable,

experimental measurement of the di�erence frequency field was made for downshift

ratios of 10 and 20 and compared with k-Wave simulations of the same setup. Figure 6.6

shows the simulated and measured magnitude of the di�erence frequency field. It was

noted that the phase of the received signal was highly variable, and thus the amplitude

of the averaged signals were smaller (likely due to residual vibration of the positioning

system following the small translations between positions). This is exacerbated by the

fact that the transducer element had size (4mm) on the same order as the acoustic

wavelength (1.5mm at 1MHz) To address this, both the signal and magnitude of

†The audio recorder was a later addition after the sound was noticed to coincide with the signal
generator trigger.
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Figure 6.6: Normalized simulated and measured di�erence frequency field
distributions for (a) f− = 173 kHz and (b) f− = 86.5 kHz. Center frequency
was that of the transducer f0 = 1.73 MHz. Dynamic range is 18 dB in all
cases.

its FFT were averaged 16 times at each point. Additionally, inclusion of a strong

(40 dB) low-pass filter with the programmable analog device enabled improved spatial

resolution of the di�erence frequency field.

The averaged magnitude at the di�erence frequency is plotted in Fig. 6.6. The

agreement between the simulated and measured data suggest that the simulations

capture the relevant physics in the free-field case and give confidence that characteri-

zation of the resulting fields may be made via a systematic, in silico study.

6.3.3 Focal Field Characteristics

Figure 6.7 demonstrates the di�erence between the fields achieved with a highly fo-

cused source when radiating at a high frequency to generate a field at the di�erence

frequency, and the field that would be obtained if the transducer were to radiate at

the di�erence frequency directly (i.e., the linear case). As the the di�erence frequency

approaches the primary frequency (as f0/ f− → 1), the fields begin to coincide. Just

as in the linear case, the trade-o� between frequency and spatial extent endures: the

confinement of the di�erence frequency energy is improved at smaller downshift ra-

tios and at higher fundamental frequencies. The nonlinearly-generated distributions

(i.e., left plots of each column in Fig. 6.7 demonstrate two deviations from expected

linear behavior. First, the low frequency is generated mostly near the focal spot by

the higher pressures of the focused beam, whereas in the linear case, the level of this

low frequency would fall uniformly as distance from the source increases (the smaller

ka results in low directivity, and thus relatively omnidirectional behavior). Second,

there is a noticeable lack of sidelobes in the nonlinear case (see especially results to
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Figure 6.7: Simulated focal fields with F#0.71 transducer, for the indicated
center frequencies (rows) and downshift ratios (columns). The f− of each
column indicates the field radiated at the di�erence frequency for generated
with the center frequency of that row; the f0 column is the distribution ex-
pected for the transducer of the same size radiating at di�erence frequency.

top right of grid), a result that is consistent with the unforcused parametric beam

case.204,221 To quantify the spatial characteristics of the field, the beam width and fo-

cal area were considered next. Figure 6.8(a) shows simulated results for the di�erence

frequency field beam widths for various primary frequencies as a function of the dif-

ference frequency f−. The insets show comparison with the field that results from the

same transducer radiating with f− as the primary (dashed lines). Just as in the linear

case, smaller downshift ratios (i.e., larger di�erence frequencies) give rise to narrower

beams. While the beams were indeed narrowest at larger di�erence frequencies (i.e.,

smaller downshift ratios), the relative reduction in beam width is more pronounced

for lower di�erence frequencies [see, e.g., 500 kHz inset for f−/ f0 = 0.1 in Fig. 6.8(a)].

Similar e�ects were seen for the resultant focal areas (i.e., region in which the level

the di�erence frequency was within 3 dB of the peak level) as well; see Fig. 6.8(b).

Smaller focal areas were observed at smaller downshift ratios (i.e., higher di�erence

frequencies). As was seen in Fig. 6.7, the confinement at lower di�erence frequencies

(higher downshift ratios) was less (note that for downshift ratios of 10 and 20 for the

500 kHz case and 20 for the 1.25MHz case were not closed over the measurement

domain), but had maxima shifted away from the transducer.

The absolute width of the beam at the di�erence frequency is decreases with fre-
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Figure 6.8: (a) Beam width (as measured relative to transducer face, see
upper right) of simulated focal fields with F#0.71 transducer, for the in-
dicated center frequencies and downshift ratios. Insets show comparison
between the di�erence frequency transverse profile (solid lines) and trans-
verse profiles for the same transducer radiating at the primary frequency
f0. (b) Focal areas (3 dB contours) for the di�erence frequency with the in-
dicated primary frequency and downshift ratio. Dashed contours indicate
contours for the linear case.

quency. However, the improvement with respect to the linear case is largest at lower

di�erence frequencies.

The F#of the transducer was also seen to a�ect the beam width in a way compa-

rable to the linear case, and again with marked improvement over the expected result

if the tranducer were to radiate at the di�erence frequency directly. Figure 6.10 shows

the resulting beam profiles and width for the XX MHz transducer with varying F#. A

fully round transducer (F#= 1/2) gave the narrowest beam width 32°, which increased

to approximately 44° for F#= 1 [Fig. 6.10(b)]. However, the relative improvement was

much more pronounced for smaller apertures [Fig. 6.10(a)].

6.3.4 Trans-skull Focal Fields

Figure 6.11 shows the simulation geometry as well as representative focal fields at

the di�erence frequencies for a downshift ratio of 10, with a 75 mm aperture. In the

corrected case, the element-specific amplitudes and delays were computed with the

HASA correction at each component frequency (i.e., at f0 ± f−/2), while in the uncor-

rected case, uniform amplitude and geometric delays were applied (as in Chap. 3).

Quantitatively, the area of peak pressure at the di�erence frequency was closer to

the intended focus across all positions and frequencies: 0.99 ± 0.50mm compared to

1.24 ± 0.61mm in the uncorrected case. The energy density at the focus (i.e., the av-
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Figure 6.9: (a) Transverse and axial profiles of the di�erence frequency
field for downshift ratio f0/ f− = 10 for the indicated primary frequency.
Dashed lines indicate the field for the same transducer radiating at the dif-
ference frequency. Gray lines indicate array focal position. (b) Transverse
and axial profiles for the indicated downshift ration for primary frequency
f0 of 1.25MHz.

erage level over a 1 dB region around the peak level) was 4.9 % lower in the corrected

case, as well as the peak level being smaller compared to the primary frequency f1
(−69 ± 2 dB in the corrected case vs −62 ± 3 dB in the uncorrected case). However, this

partly due to the amplitude shading and choice of scaling in the corrected case (as

was seen in Chap. 3).

Qualitatively, the improvement enabled the HASA was more evident. The fields

in the left columns of Fig. 6.11(b) and (b) vary more uniformly and do not incur

sidelobes. Additionally, the focal areas are more elongated, but more regular than the
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Figure 6.10: (a) Beam widths from the simulated fields with the indicated
F#at with the di�erence frequency (solid lines) compared to the same trans-
ducer radiating at the di�erence frequency. (b) Beam width as a function of
the F#.

uncorrected areas (eccentricity† 0.96±0.02 compared with 0.91±0.02 for the uncor-

rected case).

The level of the di�erence frequency was about 60 to 70 dB below that of the

primary, in good agreement with analytical theory.203 While a significantly lower, low

duty cycles could ensure small enough total power delivery via thermal absorption to

allow this technique to be viable.

6.4 Summary of Contributions

This chapter describes initial findings to establish the potential exploitation of nonlin-

ear ultrasonic phenomena for applications in the brain. First, through experimentally-

verified numerical simulations, the di�erence frequency intensity for a highly focused

transducer was investigated to establish the e�ects of primary frequency, downshift

ratio, and F#. Additionally, audible sound was generated with primary frequencies

above 200 kHz for the first time to the author’s knowledge. Finally, the trans-skull fo-

cusing technique developed and validated in Chap. 3 was demonstrated within the

simulations to improve coherence and thus facilitate the controlled, localized genera-

tion of sonic frequencies within the brain.

†Defined to be the ratio of the distance between the foci of the fitted ellipse to the 1 dB region to the
major axis of that ellipse. Thus a circular area would have eccentricity 0, while eccentricity 1 is the
asymptotic limit of a line.
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Figure 6.11: Di�erence frequency trans-skull fields for downshift ratio of
10. (a) Simulation geometry. (b) Normalized di�erence frequency fields at
focal target 1 [see (a)] with (left) and without (right) the HASA correction at
the indicated frequency. (c) Normalized di�erence frequency fields at focal
target 1 [see (a)] with (left) and without (right) the HASA correction at the
indicated frequency.
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Chapter 7

Summary & Conclusion

7.1 Review of Findings

Collectively, the work described herein described an extension of the fast, frequency-

domain angular spectrum approach to account for heterogeneity of the medium, and

its relevance to problems in transcranial imaging and therapy. Chapter 2 derived the

HASA method and discussed limits on its validity and concerns (including on a spe-

cial case of a stratified medium) regarding its practical implementation. Chapter 3

described the di�culty in predicting the acoustic field on time scales relevant to clin-

ical use, and verified that the HASA may be used to improve transcranial focusing

over a range of low megahertz frequencies and focal targets centimeters beyond the

skull. Further, these corrections were seen to require only a few hundred milliseconds

to compute—without specialized computing hardware or techniques.

Next, HASA was applied to passive acoustic mapping through the skull in Chap. 4,

which is of interest for guiding therapy, especially for cavitation activity not directly

visible by MRI. Errors in source localization were reduced by more than 60 % over a

range of relevant frequencies (i.e., harmonics of the frequencies of clinically-adopted

FUS systems, to represent microbubble scattering) and positions. While the resolution

of the images was poor compared to active imaging (both a practical and fundamen-

tal physical result), super-resolution methods based on morphological reconstruction

were developed in Chap. 5. These methods were validated experimentally and through

simulations, and through the latter were seen to enable a improvement in trans-skull

PAM accuracy and resolution (identified features down to sub-millimeter level for a sys-

tem PSF of half a centimeter). With high-frequency, active imaging data, these methods

were demonstrated to enable improved sensitivity in detection of microbubble echoes

(up to 10 % of the theoretical maximum), with little degradation in accuracy.

Finally, the use of HASA for trans-cranial generation of nonlinear acoustic e�ects

in the brain was considered. Through validated simulations, the distribution of the
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di�erence frequency from highly focused (F# less than 1) was characterized as a

function of frequency, downshift ratio, and F#. Then, trans-skull corrections were

applied and the distribution of energy in the brain at the di�erence frequency was

mapped.

7.2 Implications & Future Directions

7.2.1 Heterogeneous ASA

While the utility of the HASA is substantial (see especially Chaps. 3 and 4) its deriva-

tion follows from the linear wave equation, which neglects nonlinearity, mode con-

version, and losses. Some work addressing these e�ects to the forward simulation

problem has been advanced,36,251,252 however, the challenge of reflections is still ex-

tant and non-trivial. Similarly, especially in the case of trans-skull focusing, generation

of elastic waves, and their subsequent radiation into the brain tissue, may o�er novel

techniques for trans-skull transmission. Finally, analysis here has been for harmonic

signals, as the Fourier transform yields convenient mathematics to allow solutions to

be found. However, given that active imaging employs wide bandwidth pulses, trans-

formation of the wave equation to a basis better suited for such pulses may reveal

analytical e�ciencies that may be exploited.

7.2.2 Trans-skull Focusing

The improvement in trans-skull focusing demonstrated in Chap. 3 were for a relatively

small aperture (∼50 mm) linear array. All in-human transcranial FUS performed to

date7,9 has employed large (∼10 cm radius) hemispherical arrays—principally to avoid

skull heating due to absorption. While linear array focusing through heterogeneous for

imaging, e.g., for B-mode, may have some practical applications, therapeutic levels of

through-skull ultrasound will likely necessitate these larger arrays. The HASAmay still

be used in this case (albeit slightly less intuitively) by computing P for a delta function

over the 3D space containing all transmitters, and then evaluating its magnitude and

phase at each transmitter location. Future work should validate this focusing technique

for irregular arrays.

7.2.3 Passive Acoustic Mapping

While the simulation studies in Chap. 4 give compelling evidence of the techniques’

utility, unequivocal demonstration will require in vitro and in vivo demonstration.
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While e�ects of aperture, pitch, and measurement noise are nominally addressed

in the simulations, the e�cacy is only conclusive in practical usage. Additionally,

the stratified medium used in the biomedical context is somewhat academic, as such

idealized media are at best approximations. While it may see applications for at-

mospheric253–255 or underwater acoustics,256–259 wherein source localization in such

stratified environments are of interest.34 Additionally, similar

Finally, despite its inherent e�ciency, few sophisiticated computational techniques

were employed. For instance, parallelization of ASA calculation for each frequency

bin could reduce computation time. Further, the highest spatial sampling was used for

all reconstructions; depending on the desired resolution, these data could be down-

sampled [provided the Nyquist criterion Eq. (2.6.1) is still met]. Finally, given recent

advances in GPU technology and their demonstrated use in similar applications, it

stands to reason that comparable gains might be achieved for the HASA.

7.2.4 Super-resolution Imaging

Chapter 5 established and validated methods for identification of individual sub-

wavelength scatterers and methods for characterizing the vascualture therefrom.While

preliminary velocity estimations were obtained, future work with more sophisticated

tracking algorithms177,202 would extend the utility of this method. Additionally, the

local projection technique enables an analytical description of the vessel center (e.g.,

via a spline interpolation of the projected points). This description may enable distinc-

tion between healthy and aberrant vasculature in a way that tortuosity180 and vascular

density199 recently have been. Together with the HASA, volumetric trans-skull super-

resolution images may be generated, with more general correction than a�orded by

current methods.19,260

7.2.5 Nonlinear E�ects

The generation of sonic frequencies with spatial specificity in the brain would have

significant implications for transcranial therapy. Chapter 6 established that phased

arrays may generate low frequencies in the brain with better confinement than would

be possible with linear focusing. Just as in the linear case, larger apertures will fur-

ther reduce this spot size, and thus investigation of larger, hemispherical arrays (as

discussed in Sec. 7.2.2) is merited. Perhaps notably, stratified media also simplify the

mathematics for treatments of the nonlinear problem with the KZK equation,261 and

an approach similar to the stratified ASA correction may provide e�cient or adaptive
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focusing in that context.

The ability of ultrasound to penetrate tissue to mediate forces and convey infor-

mation noninvasively makes it among the most promising known medical technolo-

gies. While the brain exists in one of the least advantageous acoustical environments,

progress in the last two decades alone has been swift, and imaging and therapy of

central nervous system has become a reality. It is hoped that the methods described

herein will contribute to their further development and utility.
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Appendix A

Derivation of Heterogeneous ASA Results

In this Appendix, the governing equation for the heterogeneous ASA is derived from

the wave equation with a spatially-varying speed of sound. Then, the Green’s function

for the wave equation is obtained and used to find solutions to the governing equation

for cases of general heterogeneity, and that of a stratified medium.

A.1 Governing Equation

Provided the medium is weakly heterogeneous (see Appendix B.1), propagation may

be described by

∇2p −
1

c2(r)

∂2p
∂t2
= 0 . (A.1.1)

The sound speed may be written as the sum of a reference sound speed c0 and a

spatially-varying part c′(r)33

c(r) = c0 + c′(r). (A.1.2)

Because Eq. (A.1.1) is most valid for small values of c′,37 the mean value of c(r) is the

natural choice for the reference sound speed c0. Defining µ(r) = c2
0/c

2(r) and taking

the temporal Fourier transform of Eq. (B.1.1) gives(
∇2 + k2

0

)
p̃ = k2

0 (1 − µ) p̃ , (A.1.3)

where k0 = ω/c0. Note that for a uniform medium, then µ = 1, and Eq. (A.1.3) re-

duces to the homogeneous Helmholtz equation as expected. Now defining an auxiliary
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function λ(r) ≡ k2
0 (1 − µ), Eq. (A.1.3) may be written(

∇2 + k2
0

)
p̃ = F−1

k [Λ ∗ P] , (A.1.4)

where the convolution theorem has been used, and Λ(kx, ky, z) = Fk[λ(x, y, z)]. Then,

since†

Fk
[
∇2 p̃

]
=

(
−k2

x − k2
y +

∂2

∂z2

)
P , (A.1.5)

the left hand side of Eq. (A.1.3) becomes(
∇2 + k2

0

)
p̃ = ∇2 p̃ + k2

0 p̃

= F−1
k

[(
−k2

x − k2
y +

∂2

∂z2

)
P + k2

0P
]

= F−1
k

[(
k2

0 − k2
x − k2

y︸         ︷︷         ︸
= k2z

+
∂2

∂z2

)
P

]
. (A.1.6)

Then Eqs. (A.1.4) and (A.1.6) yield Equation (2.3.1)

F−1
k

[
∂2P
∂z2
+ k2

z P
]
= F−1

k [Λ ∗ P]

=⇒
d2P
dz2
+ k2

z P = Λ ∗ P , (A.1.7)

where the derivative has become total since ∂kx/∂z = ∂ky/∂z = 0. Equation (A.1.7)

is the governing equation to be solved for the angular spectrum P—from which the

acoustic field p̃ may be recovered—based on the medium heterogeneity and the initial

condition P0.

†This is demonstrated analogously to the time di�erentiation theorem (see p. 4): First write p̃(r) as the
inverse transform of its transform p̃ = F−1

k
[P]. As P is not a function of x or y, only derivatives of

the exponential term is required with respect to these variables; the full z derivative of the integrand
will need to be taken

∇2 p̃ =
1

4π2

∬ ∞

−∞

(
∂2

∂x2
+

∂2

∂y2
+
∂2

∂z2

)
P ei(kx x+kyy)︸          ︷︷          ︸

ζ

dkx dky

=
1

4π2

∬ ∞

−∞

[ (
i2k2

x

)
ζ +

(
i2k2

y

)
ζ +

∂2ζ

∂z2

]
dkx dky =

1

4π2

∬ ∞

−∞

(
−k2

x − k2
y +

∂2

∂z2

)
ζ dkx dky .

Taking the forward transform establishes the identity Eq. (A.1.5).
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A.2 Green’s Function

To begin, take z′ = 0 for convenience. Following Watanabe,31 the Green’s function for

the wave equation must satisfy by definition

∂2g

∂z2
+ k2

0g = −δ(z) . (A.2.1)

Taking the Fourier transform of both sides gives

Fk

[
∂2g

∂z2

]
+ k2

0G = −1

−k2
z G + k2

0G = −1

=⇒ G =
1

k2
z − k2

0

. (A.2.2)

The Green’s function is then given by the inverse transform:

g = F−1
k [G] =

1

2π

∫ ∞

−∞

1

k2
z − k2

0

eikz z dkz . (A.2.3)

To handle the pole at kz = k0 = ω/c0, allow the frequency to have a small imaginary

component

ω = $ + iε , (ε ∈ R>0) (A.2.4)

which means that the integral must now be taken over a curve C ∈ C which contains

the kz-axis:

g =
1

2π

∫
C

1

k2
z − k2

0

eikz z dkz . (A.2.5)

Breaking the integral up into terms with positive (C+) and negative (C−) imaginary

parts gives

g =
1

2π

∫
C+

1

k2
z − k2

0

eikz z dkz +
1

2π

∫
C−

1

k2
z − k2

0

eikz z dkz . (A.2.6)

As the radius of the semicircular paths go to infinity, it must be ensured that the

function vanishes so that the contribution to the integral lies only along the real axis.

Then, C+ corresponds to positive z (since eikz z → 0 is needed, and Im kz > 0), and
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conversely C− corresponds to negative z, see Fig. A.1.

Figure A.1: Integration contours for evaluation of Eq. (A.2.6).

Conveniently, the curves each contain only a single pole and may be integrated

with the Cauchy integral formula.32 The first term in Eq. (A.2.6) may be evaluated

1

2π

∫
C+

1

k2
z − k2

0

eikz z dkz =

∫
C+

eikz z/(kz + k0)

(kz − k0)
dkz

=
1

2π
2πi


eikz z

(kz + k0)

�����
kz=k0


= i

eik0z

2k0
(z > 0) . (A.2.7)

The same process for the lower loop C+ wherein z > 0 gives

1

2π

∫
C−

4π

k2
z − k2

0

eikz z dkz = i
e−ikz z

2k0
. (z < 0) . (A.2.8)

The choice of a positive imaginary frequency was arbitrary, thus a small negative

imaginary increment of the frequency (ω = $ − iε) should be considered as well. The

procedure follows as before, except that now convergence requires the negative loop

C− for positive z and C+ for negative z. Then,

1

2π

∫
C−

eikz z

k2
z − k2

0

dkz . = −i
e−ikz z

2k0
(z > 0) (A.2.9)
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and

1

2π

∫
C+

eikz z

k2
z − k2

0

dkz . = −i
eikz z

2k0
. (z < 0) . (A.2.10)

From Eqs. (A.2.7) to (A.2.10)

g =


− eik0 |z |

2ik0
Imω > 0

+ e−ik0 |z |
2ik0

Imω < 0
(A.2.11)

(note the signs have changed, as the imaginary unit was moved to the denominator).

For finite, nonzero z′, terms from both imaginary frequency regimes must be included.

Consideration of the time convention (∝ −iωt) dictates the terms to be chosen such

that corresponds to outgoing wave propagation (rather than arriving from infinity) is

specified.31 Finally then, the Green’s function for positive z is32

g =
1

2ikz

(
eikz |z−z′ | − eikz |z+z′ |

)
. (A.2.12)

A.3 Solutions

A.3.1 General Heterogeneity: Numerical Scheme

The Green’s function derived in Sec. A.2 may be used to approach Eq. (A.1.7) in

a general way by treating the right hand side as a source term.30 The homogeneous

solution is

Ph = Aeikz z + Be−ikz z , (A.3.1)

and the appropriate Green’s function g(z | z′) is given by Eq. (A.2.12).31,32 Then the

full solution is then given by

P = Ph +

∫ ∞

0
g(z | z′) × Λ ∗ P dz′ . (A.3.2)

Define the shorthand

ζ ≡ Λ ∗ P , (A.3.3)
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where the z argument of Λ and P is taken to be the integration variable z′ when

appearing inside the integration. To address the integration out to infinity, break up

the integrals in Eq. (A.3.2) so that∫ ∞

0
g(z | z′) × Λ ∗ P dz′ =

∫ z

0
g(z | z′) ζ dz′ +

∫ ∞

z
g(z | z′) ζ dz′

=
1

2ikz

∫ z

0

(
eikz(z−z′) − eikz(z+z′)

)
ζ dz′

+
1

2ikz

∫ ∞

z

(
e−ikz(z−z′) − eikz(z+z′)

)
ζ dz′

2ikz

∫ ∞

0
g(z | z′) × Λ ∗ P dz′ =

∫ z

0

(
eikz(z−z′) − eikz(z+z′)

)
ζ dz′

−

∫ z

0

(
e−ikz(z−z′) − eikz(z+z′)

)
ζ dz′

+

∫ ∞

0

(
e−ikz(z−z′) − eikz(z+z′)

)
ζ dz′ (A.3.4)

Note that the signs of the exponents have been adjusted to remove the absolute values.

Further manipulation of Eq. (A.3.4) gives†

2ikz

∫ ∞

0
g(z | z′) × Λ ∗ P dz′ =

∫ z

0

(
eikz(z−z′) − e−ikz(z−z′)

)
ζ dz′

+

∫ ∞

0

(
e−ikz(z−z′) − eikz(z+z′)

)
ζ dz′

= eikz z
∫ z

0
e−ikz z′ζ dz′ − e−ikz z

∫ z

0
eikz z′ζ dz′

+ e−ikz z
∫ ∞

0
eikz z′ζ dz′ − eikz z

∫ ∞

0
eikz z′ζ dz′

(A.3.5)

Notice that the last two integrals are constant with respect to z, and thus their mul-

tiplication by e±ikz z can be folded into the constants A and B in the homogeneous

†There appears to be a sign error after the third equals sign in Eq. (A2) of Ref. 30. I believe the first
integral term should read (with the notation of that paper)∫ z

0

(
eiK(z−z

′) − e−iK(z−z
′)
)

F(P(z′))dz′ .

As written (i.e., without the negative sign in the second exponent) the integral would vanish. This is
apparently just an isolated typo, as subsequent results are consistent.
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solution Eq. (A.3.1). Thus the solution will look like

P = Aeikz z + Be−ikz z +
1

2ikz

[
eikz z

∫ z

0
e−ikz z′ζ dz′ − e−ikz z

∫ z

0
eikz z′ζ dz′

]
(A.3.6)

If it is assumed that there are no backward travelling waves, then B = 0, and from

the boundary condition P |z=0 = P0 at the source plane, the implicit solution is found

[Eq. (2.3.2), repeated here]:

P = P0eikz z +
eikz z

2ikz

∫ z

0
e−ikz z′ (Λ ∗ P) dz′ . (A.3.7)

The approximate marching scheme suggested by Jing et al.251 defines the angular

spectrum at some discrete axial position zn to be

Pn = P(kx, ky, zn) , (A.3.8)

and

Pn+1 = P(kx, ky, zn + ∆z). (A.3.9)

Then, with knowledge of the initial condition P0 = P0, and approximation of the

integral,

P1 ' P0eikz z1 +
eikz z1

2ikz

[
e−ikz z0 (Λ ∗ P) ∆z

]
+O

[
(∆z)2

]
. (A.3.10)

The field may thus be approximated at arbitrary z via262

Pn+1 ≈ Pneikz∆z +
eikz∆z

2ikz
(Pn ∗ Λ) × ∆z . (A.3.11)

Truncation Error To ensure that higher order terms are negligible in Eq. (A.3.10),

note first that ∫ z+∆z

z
f (z′) dz′ = f (z)∆z +

1

2

∂ f
∂z
(∆z)2 + . . . . (A.3.12)
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Thus the constant of proportionality for (∆z)2 for the left Riemann sum is 1
2∂ f /∂z. In

this case, the integrand is f (z) = (Λ ∗ P) exp−ikzz, so that

∂

∂z
[
e−ikz z (Λ ∗ P)

]
= −ikze−ikz z (Λ ∗ P) + e−ikz z ∂

∂z
(Λ ∗ P) . (A.3.13)

Now di�erentiation of the convolution follows an analogous chain rule, since

∂

∂z
(Λ ∗ P) =

∂

∂z

[∬ ∞

−∞

Λ(kx − k′x, ky − k′y, z) P(kx, ky, z) dk′x dk′y

]
=

∬ ∞

−∞

{
Λ(kx − k′x, ky − k′y, z)

∂P
∂z
+ P

∂

∂z
[
Λ(kx − k′x, ky − k′y, z)

] }
dk′x dk′y

= Λ ∗
∂P
∂z
+ P ∗

∂Λ

∂z
. (A.3.14)

Thus the largest neglected terms have magnitude bounded by

(∆z)2

2

����eikz z

2ikz

(
−ikze−ikz z + Λ ∗

∂P
∂z
+ P ∗

∂Λ

∂z

)���� ≤ (∆z)2

2

[
1

2
+

����eikz z

2ikz

(
Λ ∗

∂P
∂z
+ P ∗

∂Λ

∂z

)����]
≤
(∆z)2

2

[
1

2
+

����eikz z

2ikz

���� (|Λ| · ����∂P
∂z

���� + |P | · ����∂Λ∂z

����) ]
≤
(∆z)2

2

[
1

2
+

1

2k0

(
|Λ| ·

����∂P
∂z

���� + |P | · ����∂Λ∂z

����) ] ,
(A.3.15)

as |eikz z | = 1 and |kz | ≤ |k0 |. The first term in Eq. (A.3.15) is smaller than the first

term by a factor of ∆z/2, ensuring the error from this term may be made arbitrarily

small with an appropriate choice of step size. The second terms are scaled by factors

|∂P/∂z |
2|P |

∆z and
|∂Λ/∂z |

2|Λ|
∆z , (A.3.16)

relative to the first term in the expansion, respectively. That the first term is small

requires that the pressure field does not change quickly with respect to the step size.

The required step ∆z is the known from a priori knowledge of the frequency and

medium (and thus wavelength). The second term describes the relative change in the

medium over the step is small. Since it was already required that the scale of the sound

speed change is long compared to the wavelength, then this criterion is automatically

met. Thus the truncation is valid as long as ω∆z/cmax � 1.
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A.3.2 Strati�ed Case: First Order Analytical Result

For stratified media, a first-order analytical solution may be obtained. If the sound

speed is stratified along the axial direction z, then µ = µ(z) and

λ(z) = k2
0 (1 − µ) . (A.3.17)

In this case the angular spectrum of λ is Λ = λ δ(kx) δ(ky), such that Eq. (2.3.1)

becomes

d2P
dz2
+ k2

z P = λ P . (A.3.18)

Assume a WKB–type solution35 of the form

P = A(kx, ky, z) eikz z , (A.3.19)

where A is a complex amplitude. Substitution of Eq. (A.3.19) into Eq. (A.3.18) and

evaluation of the derivatives yields

d2 A
dz2
+ 2ikz

dA
dz
− λA = 0 . (A.3.20)

To first order, the first term in Eq. (A.3.20) can be neglected to obtain a first-degree

ODE for A, which may be integrated directly to give

A = A0 exp

(
1

2ikz

∫ z

0
λ(z) dz′

)
. (A.3.21)

Application of the boundary condition at z = 0 gives

A = P0 exp

(
1

2ikz

∫ z

0
λ(z′) dz′

)
, (A.3.22)

and the angular spectrum at arbitrary z is then

P =
[
P0 exp

(
1

2ikz

∫ z

0
λ(z′) dz′

)]
eikz z

= P0 exp

[
i

(
kzz −

k2
0

2kz

∫ z

0
1 − µ(z′) dz′

)]
. (A.3.23)
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Equation (A.3.23) represents an additional phase delay φ to the homogeneous medium

case given by

φ =
k2

0

2kz

∫ z

0
1 − µ(z′) dz′ . (A.3.24)

Note that for a homogeneous medium, then µ = 1, and the homogeneous medium

case is recovered. Equation (A.3.24) may be thought of as accumulation of phase

shifts incurred as the wave travels through an infinitesimal width dz, i.e.,

φ =

∫
dφ =⇒ dφ =

k2
0

2kz
(1 − µ) dz . (A.3.25)

Since it was required that c′/c0 is small, µ(z) ≡ (1 + c′/c0)
−2 can be expanded so that

Eq. (A.3.25) becomes

dφ '
k2

0

2kz

[
1 −

(
1 − 2

c′

c0

)]
dz

'
k2

0

2kz

(
2

c′

c0

)
dz =

(
c′

c0
k0

) (
k0

kz
dz

)
. (A.3.26)

The term (c′/c0)k0 has the form of an e�ective wavenumber, accounting for the dila-

tion of contraction of the wavelength due to the di�erence in sound speed from c0.

The second term (k0/kz) dz is the distance between the two infinitesimally separated

planes for a plane wave traveling with propagating wavenumber kz. The extra phase

then has a the familiar form φ ∼ keff d.

Neglecting the first term in Eq. (A.3.20) requires that |d2 A/dz2 | is small compared

to both |(dA/dz)/kz | and |λ |. Evaluation of the derivatives of the found solution gives

the condition as����d2 A
dz2

���� ∼ ����dλ/dz
2ikz

−
λ2

4k2
z

���� =⇒ ����dλ/dz
2ikzλ

−
λ

4k2
z

���� ≤ ����dλ/dz
2ikzλ

���� + ���� λ4k2
z

���� � 1 . (A.3.27)

Now the second term that dictates |(k2
0/k

2
z )(1−µ)| is negligible, so for k0 ∼ kz (paraxial

approximation), this requirement is that µ ' 1 − c′/2c0 ∼ 1, i.e., that the relative

magnitude of the sound speed changes should be small. From the definition λ =
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k2
0(1 − µ). Thus the first term then requires that����dλ/dz

2ikzλ

���� = ����� k2
0c2

0

[ (
1/c3

)
dc/dz

]
2kzk2

0(1 − µ)

�����
=

���� 1

2kz

dc/dz
c

µ

(1 − µ)

����
≤

����dc/dz
ωc

µ

2(1 − µ)

���� . (A.3.28)

However, µ ∼ 1 is required for the second term in Eq. (A.3.27) to be satisfied. Thus to

fulfill Eq. (A.3.28), it must be true that dc/dz/ω, i.e., the sound speed change over a

wavelength is a further order of magnitude smaller than (c2/c2
0 − 1)−1. Therefore, the

high frequency requirement is significantly more important than the condition that

the relative changes in the sound speed are small.
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Appendix B

Wave Equation Derivations

B.1 Weakly Heterogeneous Wave Equation

Derivation of the heterogeneous ASA follows from the assumption that linear acoustic

propagation in a heterogeneous medium obeys†

∇2p −
1

c2
0(r)

∂2p
∂t2
= 0 , (B.1.1)

i.e., that the constant small-signal sound speed c0 in the homogeneous medium wave

equation may be made spatially dependent. Following Ref. 263, a first-order wave

equation for a heterogeneous, quiescent fluid is derived herein from the constituitive

relations, and bounds on the validity of Eq. (B.1.1) are established.

B.1.1 Governing Equations

First, conservation of mass requires that the total density % obeys

∂%

∂t
+ ∇ · (%u) = 0 . (B.1.2)

If the acoustic density ρ is small compared to the ambient density ρ0, we have from

Eq. (B.1.2)

∂

∂t
(ρ0 + ρ) + ∇ · [(ρ0 + ρ) u] = 0

∂ρ

∂t
+ ∇ · (ρ0u) + ∇ · (ρu) = 0 . (B.1.3)

†Note that in this section c0 is spatially varying property of the medium, as are ρ0 and p0. It should
not be confused with its use as a constant reference sound speed.
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Neglecting the second-order (underlined) term in Eq. (B.1.3) leaves

∂ρ

∂t
+ ρ0∇ · u + ∇ρ0 · u = 0 (B.1.4)

(note the term proportional to ∇ρ0 must be retained, since the density may vary with

position). Similarly, the momentum conservation equation is

%
Du

Dt
+ ∇ptot = f , (B.1.5)

where f is the total static body force per unit volume acting on the fluid and D/Dt is

the material derivative. For the unforced case of interest, f is uniformly 0. Writing the

total density % = ρ0 + ρ and total pressure ptot = p0 + p as small perturbations of the

ambient values, from Eq. (B.1.5),

(ρ0 + ρ)

(
∂

∂t
+ u · ∇

)
u + ∇(p0 + p) = 0

(ρ0 + ρ)

[
∂u

∂t
+ (u · ∇)u

]
+ ∇p0 + ∇p = 0

ρ0
∂u

∂t
+ ρ0(u · ∇)u + ρ

∂u

∂t
+ ρ (u · ∇)u + ∇p0 + ∇p = 0 . (B.1.6)

Again discarding the higher-order (underlined) terms in Eq. (B.1.6) and noting that

∇p0 = −f = 0 gives

ρ0
∂u

∂t
+ ∇p = 0 . (B.1.7)

Finally, to obtain an equation of state, assume that the local entropy s is unchanged by

the passing sound wave (i.e., the compression is adiabatic and lossless), but that the

entropy may vary over the propagation distance. Since the total pressure is a function

of density and entropy,

Dptot

Dt
=

D

Dt

[
ptot(ρ, s)

]
=

(
∂ptot

∂ρ

)
s

D%

Dt
+

(
∂ptot

∂s

)
%

Ds
Dt

. (B.1.8)

Note that constant (local) entropy means that Ds/Dt = 0, and define c2
0 ≡ ∂p/∂ρ as

usual (although it may now vary in space). Then Eq. (B.1.8) becomes

Dptot

Dt
= c2

0

D%

Dt
. (B.1.9)
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Finally, writing the pressure and density as perturbations and discarding second-order

terms gives

D

Dt
(p0 + p) = c2

0

D

Dt
(ρ0 + ρ)[

∂

∂t
+ (u · ∇)

]
(p0 + p) = c2

0

[
∂

∂t
+ (u · ∇)

]
(ρ0 + ρ)

∂p0

∂t
+ u · ∇p0 +

∂p
∂t
+ u · ∇p =

c2
0

[
∂ρ0

∂t
+ u · ∇ρ0 +

∂ρ

∂t
+ u · ∇ρ

]
. (B.1.10)

Twice underlined terms are 0 (since the medium properties are constant in time) and

the terms underlined once are of second order. Then, since ∇p0 = 0 in the unforced

case, we are left then with just

∂p
∂t
= c2

0

(
u · ∇ρ0 +

∂ρ

∂t

)
. (B.1.11)

B.1.2 Wave Equation

To obtain a wave equation, first rearrange Eq. (B.1.4) to solve for ∂ρ/∂t:

∂ρ

∂t
= −ρ0∇ · u − ∇ρ0 · u , (B.1.12)

and substitute into Eq. (B.1.11)

∂p
∂t
= c2

0

[
u · ∇ρ0 − (ρ0∇ · u + ∇ρ0 · u)

]
= −ρ0c2∇ · u . (B.1.13)

Taking the divergence of Eq. (B.1.7) gives

ρ0∇ ·
∂u

∂t
+ ∇2p = 0 , (B.1.14)

and the time derivative of Eq. (B.1.13) is

∂2p
∂t2
= −ρ0c2 ∇ ·

∂u

∂t
(B.1.15)
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since ∂p0/∂t = 0. Taking the divergence of Eq. (B.1.13) becomes

∂

∂t
∇p = −∇

(
ρ0c2

0∇ · u
)
. (B.1.16)

Now, substitution of Eq. (B.1.12) into the time derivative of Eq. (B.1.7) gives

ρ0
∂2u

∂t2
+
∂

∂t
∇p = 0 . (B.1.17)

Subtracting Eq. (B.1.16) from Eq. (B.1.17),

ρ0
∂2u

∂t2
= ∇

(
ρ0c2

0∇ · u
)
. (B.1.18)

Expanding the last term on the right of Eq. (B.1.18) gives

∇

(
ρ0c2

0∇ · u
)
= ρ0c2

0∇
2u + ∇

(
ρ0c2

0

)
· (∇ · u)

= ρ0c2
0∇

2u +
[
c2
0∇ρ0 + 2ρ0c0∇c0

]
· (∇ · u)

= ρ0c2
0

[
∇u +

(
1

ρ0
∇ρ0 +

2

c0
∇c0

)]
· (∇ · u)

= ρ0c2
0

[
∇2u + ∇(ln ρ0c2

0) · (∇ · u)
]
, (B.1.19)

where ∇2u indicates the Laplacian of each component of u. Substituting Eq. (B.1.19)

into Eq. (B.1.18) gives

ρ0
∂2u

∂t2
= ρ0c2

0

[
∇2u + ∇(ln ρ0c2

0) · (∇ · u)
]

=⇒ ∇2u −
1

c2
0

∂2u

∂t2
= ∇(ln ρ0c2

0) · (∇ · u) . (B.1.20)

Thus in the absence of external forcing, and since the two terms on the left of Eq. (B.1.20)

are of the same order, we can say that Eq. (B.1.1) is valid when��∇(ln ρ0c2
0)

�� = ����∇ρ0

ρ0
+

2∇c0

c0

���� � `−1 , (B.1.21)

where ` is the characteristic length, i.e., the wavelength. Thus density and sound speed

must each change over scales that are large compared to the wavelength.37 Finally,

from momentum equation Eq. (B.1.7) it is seen that for harmonic fields, Eq. (B.1.20)

is valid for p under the same conditions.
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B.2 Nonlinear Wave Equations

While the Westervelt equation [Eq. (6.2.2), repeated here]

∇2p −
1

c2
0

∂2p
∂t2
= −

δ

c4
0

∂3p
∂t3
−

β

ρ0c4
0

∂2p2

∂t2
, (B.2.1)

captures several phenomena. A sketch of its derivation (after Ref. 204) is presented

here to highlight its underpinning assumptions and inform its use in this context; see

that reference for a more rigorous presentation.

B.2.1 Governing Equations

As for the linear wave equation, the Westervelt equation is derived from constitutive

equations

Mass Conservation:

D%

Dt
+ %∇ · u = 0 (B.2.2)

Momentum Conservation:

%
Du

Dt
+ ∇ptot = µ∇

2u +

(
µB +

1

3
µ

)
∇ (∇ · u) (B.2.3)

Entropy Equation:

%T
Ds
Dt
= κ2∇2T + µB (∇ · u)

2 +
1

2
µ

(
∂u j

∂xk
+
∂uk

∂x j
−

2

3
δ j k

∂uk

∂xk

)2

(B.2.4)

Equation of State:

ptot = ptot(%, s) , (B.2.5)

where c2
0 ≡ (∂P/∂ρ)s is the small signal sound speed, s is the entropy, T is the termper-

ature, µ is the viscosity, and µB is the bulk viscosity. In Eq. (B.2.4), u j = u ·e j , x j = r ·e j ,

and δ j k is the Kronecker delta.

B.2.2 Second Order Approximations

Introduce two ordering parameters: the Mach number ε ≡ |u |/c0 and the viscosity

parameter η ≡ µω/ρ0c2
0 . These numbers describe relative importance of large ampli-

tude e�ects and viscosity relative to pressure, respectively. Then expansions of the

pressure (ptot = p0+ p), density (% = ρ0+ ρ), temperature (Ttot = T0+T), and entropy
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(stot = s0 + s) and expansion of the material derivative allow Eq. (B.2.2) to be written

∂ρ

∂t
+ ρ0∇ · u + ρ∇ · u + u · ∇ρ︸             ︷︷             ︸

Second Order Terms

. = 0 (B.2.6)

Since there are no third order terms, Eq. (B.2.2) remains exactly true. The same

substitutions for and retention of terms of second order† in Eq. (B.2.3) gives

ρ0
∂u

∂t
+ ∇p = µ∇2u +

(
µB +

1

3
µ

)
∇2u −

1

2
ρ0∇u2 − ρ

∂u

∂t
. (B.2.7)

In arriving at Eq. (B.2.7) it is assumed that we are considering points su�ciently far

from any boundaries. Here, “su�ciently far” specifically means that e−x/`v/η � 1,

where `v is a characteristic length of the vorticity of the field.‡ The assumption of

su�cient distance from boundaries also implies that the dominant contribution to the

temperature fluctuations are due to acoustic disturbances, and thus to second order

Eq. (B.2.4)

ρ0T0
∂s
∂t
= κ∇2T . (B.2.8)

Finally, expanding the generic equation of state Eq. (B.2.5)

ptot − p0 = c2
0 (% − ρ0) +

c2
0

ρ0
(% − ρ0)

2 +

(
∂ptot

∂s

)
ρ0

(stot − s0)

=⇒ p = c2
0ρ +

c2
0

ρ0

B
2A

ρ2 +

(
∂ptot

∂s

)
ρ0

s , (B.2.9)

where B/2A is called the parameter of nonlinearity. While entirely semantic, the dis-

tinction will be made between the parameter of nonlinearity (B/2A) and nonlinear

parameter (β = 1 + B/2A).

†That is, terms of O(ε2), O(η2), O(εη) are kept, but terms O(ε2η) or O(ε3) are discarded.
‡The specific requirements arise from expansions ∇(∇·u) = ∇2u+∇×∇×u and (u·∇)u = 1

2∇u2−u×∇×u.
Then it is assumed that the vorticity is the primary contribution of to the total rotational particle
velocity compared to acoustic or thermal motion, i.e., that ∇× u ' ∇× uv . Comparing the magnitudes
of the cross product terms to ∇u2 leads to the stated condition (which is the stronger of two in fact:
neglecting one of these terms requires only that e−x/`v /

√
η � 1).
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B.2.2.1 First Order Substitutions

A benefit of the ordering scheme used is that first order relations may be used in the

second order equations. For instance, consider the first term of Eq. (B.2.2), which is

a second order term. Since ρ = c−2
0 p +O(ε̄2)† and ∇ · u = −ρ−1

0 ∂ρ/∂t +O(ε̄2),

−ρ∇ · u = −

(
p
c2
0

+O(ε̄2)

) (
−

1

ρ0

∂ρ

∂t
+O(ε̄2)

)
=

p
c2
0

·
1

ρ0

∂ρ

∂t︸       ︷︷       ︸
O(ε̄2)

−

[
p
c2
0

O(ε̄2) −
1

ρ0

∂ρ

∂t
O(ε̄2)

]
+O(ε̄4)︸                                         ︷︷                                         ︸

O(ε̄3)

=
p
c2
0

·
1

ρ0

[
1

c2
0

∂p
∂t
+O(ε̄2)

]
+O(ε̄3)

=
p

ρ0c4
0

∂p
∂t
+O(ε̄3) . (B.2.10)

Thus, in all second-order terms, first order approximations for quantities may be sub-

stituted as is convenient while third-order accuracy is maintained. If the Lagrangian

density is defined

L ≡ 1

2
ρ0u2 −

p2

2ρ0c0
, (B.2.11)

then it may be shown242 that Eq. (B.2.6) may be written

∂ρ

∂t
+ ρ0∇ · u =

p
ρ0c4

0

∂p2

∂t
+

1

c2
0

∂L
∂t

, (B.2.12)

and that Eq. (B.2.7) may be written

ρ0
∂u

∂t
+ ∇p = −

1

ρ0c4
0

(
µB +

4

3
µ

)
∇
∂p
∂t
− ∇L . (B.2.13)

†Here, ε̄ is a generic ordering parameter that is defined similarly to and has magnitude of the same
order as the Mach number ε and viscosity parameter η.
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Finally, the entropy and state equations [Eq. (B.2.8) and Eq. (B.2.9), respectively] may

be combined, and after using thermodynamic relations, yield

ρ =
p
c2
0

−
1

ρ0c4
0

B
2A

p2 −
κ

ρ0c4
0

(
1

Cv
−

1

Cp

)
∂p
∂t
, (B.2.14)

where Cp and Cv are the specific heats at constant pressure and volume, respectively.

B.2.2.2 Westervelt Equation

Manipulation of Eqs. (B.2.12) to (B.2.14), elimination of ρ, as well as a final first order

substitution for ∇2p = c−2
0 ∂2p/∂t2 gives

∇2p −
1

c2
0

∂2p
∂t2
+
δ

c4
0

∂3p
∂t3
= −

β

ρ0c4
0

∂p2

∂t
−

(
∇2 +

1

c2
0

∂2

∂t2

)
L , (B.2.15)

where δ is termed the sound di�usivity

δ ≡
1

ρ0

(
4

3
µ + µB

)
+

κ

ρ0

(
1

Cv
−

1

Cp

)
. (B.2.16)

Comparing Eq. (B.2.15) with Eq. (B.2.1), the canonical Westervelt equation ap-

parently omits the term containing the Lagrangian density. To understand why, note

that L may be written in terms of the velocity potential242

L = ρ0

4

(
∇2 −

1

c2
0

∂2

∂t2

)
φ2 . (B.2.17)

Then, Eq. (B.2.15) can be written(
∇2 −

1

c2
0

∂2

∂t2

) [
p +

ρ0

4

(
∇2 −

1

c2
0

∂2

∂t2

)
φ2

]
+
δ

c4
0

∂3p
∂t3
= −

β

ρ0c4
0

∂p2

∂t
. (B.2.18)

Now if the bracketed term is introduced as an auxiliary variable p̄, then

∂ p̄2

∂t
=
∂p2

∂t
+O(ε̄3) (B.2.19)

and

∂3 p̄
∂t3
=
∂3p
∂t3
+O(ε̄3) , (B.2.20)
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and so to second order,

∇2 p̄ −
1

c2
0

∂2 p̄
∂t2
+
δ

c4
0

∂3 p̄
∂t3
= −

β

ρ0c4
0

∂ p̄2

∂t
. (B.2.21)

Thus the Westervelt equation is valid when p̄ ' p. This approximation turns out to be

satisfied when the nonlinear e�ects that accumulate as the wave propagates dominate

over nonlinear e�ects that occur locally due to the disturbance;264 Neglecting these

local e�ects is usually safe for locations more than a wavelength from the source,204

which is the case for the nonlinear cases of interest here, and thus the Westervelt

equation [Eq. (B.2.1)] can be taken to capture the relevant physics.

B.2.2.3 KZK Equation

The KZK equation is a simplification of the full nonlinear wave equation under the

assumptions of high frequency sources that generate fields correspondingly high direc-

tionality (i.e., sound beams). In this case, if it is required that the e�ects of di�raction

occur at second order (as are the contributions of absorption and nonlinearity), then

it may be shown† the governing equation is Eq. (6.2.7), repeated here

∂2p
∂z∂τ

=
c0

2
∇2
⊥p +

δ

2c2
0

∂3p
∂τ3
+
∂2p2

∂τ2
, (B.2.22)

where τ = t − z/c0, and ∇2
⊥ = ∂

2/∂x2 + ∂2/∂y2.

†This is accomplished by requiring that the field changes are slow in the axial direction relative to the
transverse. Then, scaling the spatial coordinates as (x ′, y′, z′) = (

√
ε̄ x,
√
ε̄ y, z) and transforming the

time as τ = t − z/c0 and evaluating the Laplacian, to show they are are of the same order. Discarding
higher order terms and transforming back to the unprimed coordinates gives Eq. (B.2.22).
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Appendix C

Singular Value Decomposition Filter

The use of the singular value decomposition (SVD) filter is a type of principal com-

ponent analysis that has seen widespread adoption in ultrasound imaging to separate

pixel intensities that fluctuate rapidly in time (e.g., those due to stochastic reflections

from microbubbles or changing due to perfusion) from more static scattering (e.g.,

from the surrounding tissue).265 Its use for this purpose was proposed in Ref. 266,

drawing on recent advances in computational techniques267 to allow the large resul-

tant matrices to be manipulated, and a brief review of its formulation a is provided

herein.

C.1 Concept

Consider reshaping each frame of a series into a column vector, and forming a single

matrix (termed the Casorati matrix, see Fig. C.1) by appending the column vectors

from each frame. Now each row of the matrix represents a time series of a pixel’s

intensity throughout the acquisition. It turns out that any real valued matrix S (see

Figure C.1: (a) The stack of Nt ultrasound frames comprises many Nx -
by-Ny–pixel frames. (b) The Casorati matrix reshapes these data to a 2D
matrix.
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Sec. C.2) may be written

S = UΣVT , (C.1.1)

where Σ is a diagonal matrix of the singular values of S. Reference 266 demonstrates

that the columns of U and V represent the spatial and temporal singular vectors of S.

Thus the spatiotemporal intensity of a pixel s is given by

s(x, y, t) =
∑

i

σi · Ii(x, y)Vi(t) , (C.1.2)

where Vi is the ith column of the matrix V in Eq. (C.1.1), and Ii represent “basis”

intensity distributions from the spatial singular vectors Vi. The largest singular vectors

are those that correspond to slowly-changing signals (high spatial coherence between

frames). Since σi is monotonically decreasing, setting the first few singular values,

applying a high pass filter on i (that is, setting σi = 0 for i less than some threshold)

will remove more stationary signal from the images.

C.2 Existence of Decomposition

A brief review of the underpinnings of the SVD and a formal statement of its definition

are presented here; for full details see Ref. 268. The singular values σi of a matrix

S ∈ Rm×m are defined as the ordered square roots of the eigenvalues of the symmetric

matrix A = STS. A few facts are now stated:

Lemma C.2.1. The eigenvectors of A are orthogonal.

Proof. Let λ1 , λ2 be the distinct eigenvalues of A associated with eigenvectors v1 and v2.

Then

λ1v1 · v2 = (λ1v1)
Tv2 = (Av1)Tv2

=
(
vT
1 AT

)
v2 = vT

1

(
ATv2

)
= vT

1 (Av2) = vT
1 (λ2v2) = λ2v1 · v2 .

Thus λ1v1 · v2 = λ2v1 · v2, and since λ1 , λ2, v1 · v2 = 0. Thus all eigenvectors for unique

eigenvalues of A are orthogonal. �

Lemma C.2.2. The singular values of S are real and positive.
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Proof. Let λn be the distinct eigenvalues of A = STS associated with eigenvectors vn, which

are orthogonal by Lemma C.2.1. Then

‖Svi ‖2 = (Svi)TSvi =
(
vT
i ST

)
Svi

= vT
i

(
STS

)
vi = vT

i (Avi)

= λ‖vi ‖
2 .

Since ‖Svi ‖2 and ‖vi ‖2 are positive, it must be true that λi > 0. Thus σi =
√
λi ∈ R>0. �

Lemma C.2.3. If S has r non-zero singular values, then {Sv1 , . . . ,Svr} is an orthogonal

basis for the column space of S, and S has rank r .

Proof. Since the eigenvectors vi of A are orthogonal and the associated eigenvalues λi are

nonzero (Lemma C.2.2),

(Svi)T ·
(
Sv j

)
=

(
vT
i ST

)
·
(
Sv j

)
= vT

i

(
STS

)
v j = vT

i

(
Av j

)
= λjvi · v j = 0 .

Thus the elements of {Sv1 , . . . ,Svr } are orthogonal. Now ‖Svi ‖ = σi > 0 for i < r, so none of

Svi are 0 for i < r, and therefore {Sv1 , . . . ,Svr } are linearly independent. Finally, since any

vector in the column space of S is in the span of {Sv1 , . . . ,Svr }, we can say that its rank is

the same as the dimension of its column space, namely r . �

With Lemmas C.2.1–C.2.3 established, it can now be shown that the singular value

decomposition exists.

Theorem C.2.4. The matrix may be written S = UΣVT, where Σ contains the ordered

singular values σ1 , . . . , σr along the diagonal.

Proof. From Lemma C.2.3, {Sv1 , . . . ,Svr } form an orthogonal basis for the column space of

S. Each element can then be normalized giving an orthonormal basis

ui =
1

Avi
Avi =

Avi
σi

Now if r < m, thenadditional unit vectors may be found such that {u1 , . . . , u1} span Rm. Now

define the matrices

U ≡
©«
| | |

u1 u2 . . . um

| | |

ª®®®¬ and V ≡
©«
| | |

v1 v2 . . . vn

| | |

ª®®®¬ .
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Because {ui} and {vi} are orthogonal sets, U and V are orthogonal matrices. Now

SV =
©«
| | | |

Sv1 . . . Svr 0 . . . 0

| | | |

ª®®®¬ =
©«
| | | |

σ1u1 . . . σrur 0 . . . 0

| | | |

ª®®®¬ .
If Σ is defined

Σ ≡

©«

σ1 0

σ2 0
. . .

0 σr

0 0

ª®®®®®®®®¬
Then,

UΣ =
©«
| | | |

σ1u1 . . . σrur 0 . . . 0

| | | |

ª®®®¬ = SV

so that

UΣVT = (SV)VT = S

which establishes the decomposition. �

C.3 The SVD Filter

The SVD filtering process for super-resolution takes the entire stack of beamformed

images, and reshapes it into a 2Dmatrix S (“Casorati matrix”) with dimensions Nx Nz×

Nt ; thus each row of the matrix can be thought of as the intensity value of each pixel in

the a frame, and the time-varying intensity of the pixel given along the columns of that

row. From theorem C.2.4, this matrix S may be written in terms of the decomposition

S = UΣVT . (C.3.1)

Equation (C.3.1) may be considered as the weighted sum of the component matrices269

S =
r∑

i=1

σi uiv
T
i , (C.3.2)
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Figure C.2: The SVD filter removes the largest singular values σi (corre-
sponding to tissue motion) and smallest (corresponding to noise) to enable
decluttering and flow-specific imaging.

where ui ∈ R
Nx ·Nz is the ith row of U and describes the spatial content, and vi ∈ R

Nt

is the ith column of V and describes the temporal content.

Qualitatively, the weight σ (i.e., the singular value) describes the spatiotemporal

coherence of the pixel intensities.266 Pixels nearby that have similar intensity through-

out the acquisition (i.e., they do not change) are likely associated with tissue, wheres

pixels that are not correlated in time (i.e., they change quickly and di�erently from

other pixels) are likely due to the flow. However, the highest signular values (i.e.,

those that have very little spatiotemporal coherence) likely represent noise, and are

also often removed from the raw data.

The SVD filter sets the few largest values of σ (those corresponding to tissue)

and few smallest values of σ (those corresponding to random noise) to 0, and then

reconstructs the data via Eq. (C.3.1). In this way, signal due to the tissue and noise

is removed, while signal due to perfusion or flowing microbubbles is retained; see

Fig. C.2 Determining the optimal cuto� values for σ is more subtle,270 but relatively

naive “brick wall” filters have demonstrated improvement over the unfiltered case.
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