
International Student Challenge Problem in
Acoustic Signal Processing 2019

Scott Schoen Jr
Mechanical Engineering, Georgia Tech

Atlanta, GA USA | scottschoenjr@gatech.edu

Problem text has been adapted from the problem publication1 and Ref. 2. Matlab source
code for reproduction of the figures is provided in Appendix B. The geometry and coordinates
used for this problem are shown in Fig. 1. The choice of the x-direction is arbitrary, but taken
leftward such that the plane’s position is positive during its approach.

Figure 1: Geometry of the problem. The plane sound source at height h
travels with horizontal velocity v in the negative x-direction, and its acoustic
signature is measured by a receiver at depth d. After Refs. 1 and 3.

Task 1

Given that a turboprop aircraft is in level flight at a speed of 239 knots (123m/s) and an altitude of 496 ft feet

(151m); that the depth of the hydrophone is 20m below the (flat) sea surface; that the isospeed of sound propa-

gation in air is 340m/s; and that in seawater, it is 1520m/s, predict the variation with time of the instantaneous

frequency using Urick’s two isospeed sound propagation media approach and comment on its goodness of fit

to the measurements.

The ray that leaves the plane and reaches the hydrophone will be refracted according to
Snell’s law,†

sin θ1
c1
=

sin θ2
c2

, (1.1)

where 1 subscripts indicate values for the air half-space, and 2 for water. Align the x-axis with
the direction of the plane travel and its origin directly above the hydrophone (see Fig. 1),

†As seems to be the case with many important results, the choice of eponym for Eq. (1.1) is not totally uncon-
tested. Evidently Abu Said al-Ala Ibn Sahl (984), Thomas Harriot (ca. 1602), and René Descartes (1637) all
have claims towards its modern formulation.4
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such that the ray that leaves the plane and arrives at the sensor must obey

x(t) = h tan θ1 + d tan θ2 . (1.2)

With our choice of coordinates, we have x(t) = −vt. I’m not sure if there’s a nice closed form
expression to be found from Eqs. (1.1) and (1.2), but since we now have two equations, we
can use a root finding algorithm† to find θ1 as a function of time. We should also note that
since c2 > c1, there is a critical angle around 13°; beyond this angle, we should expect no
sound from the plane to reach the receiver.‡ The so calculated angle of incidence θ1 as a
function of time is shown in Fig. 1.1.

Critical Angle

Critical Angle

Figure 1.1: Computed angle of incidence θ1 of the direct path ray as a
function of time. The critical angles are indicated by the dashed lines.

Now, with v as the velocity of the source, and r̂ as the unit vector along the incident ray, its
apparent frequency will be Doppler shifted according to6

ω =
ω0

1 − v · r̂/c1
=

ω0

1 − (v/c1) sin θ1
. (1.3)

The predicted frequency from Eq. (1.3) shows excellent agreement with the measurements,
with an RMS error of only 0.24Hz over the interval; see Fig. 1.2. The provided measurements
end around ±1.4 s, times which are consistent with the critical angles seen in Fig. 1.1. The
variability of the measured frequency at the extreme times (|t | & 0.5 s) from the prediction
may be due to surface variability, since water waves occur on meter scales—similar to that
of the incident wavelength.

†I’ve just taken advantage of the exceptionally convenient matlab built-in function fzero; see Appendix B.
This algorithm uses a combination of several canonical techniques and is adapted from Ref. 5.
‡That is, a single ray from the point source will not reach the receiver. Though the plane has finite extent, a
rough estimation of the propeller dimension a gives ka ∼ 1. Thus while the source is likely not omnidirectional,
a point source model (valid for ka � 1) is not egregious. Additionally, arrivals from surface scattering and
the bottom bounce path (which are not considered here) may be present in the measured data.
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Figure 1.2: Comparison of the predicted instantaneous frequency [Eq. (1.3),
solid line], with the the observed frequencies from the file (circles) as a
function of time.

Task 2

Predict the variation with the elevation angle of the instantaneous frequency of the source signal using Urick’s

two isospeed media approach and comment on its goodness of fit to the actual data measurements.

The ray arriving at the array from grazing angle ξ = π
2 − θ2 has an depression angle from the

source γ (see Fig. 1). Computing θ1 as in Problem 1, we have (with γ = π
2 − θ1) the shifted

frequency

ω =
ω0

1 − (v/c1) cos γ
. (2.1)

Then since cos γ = (c1/c2) cos ξ we can evaluate the expected source frequency as a function
of the array bearing angle ξ. Plotting Eq. (2.1) (solid line in Fig. 2.1) again indicates very
good agreement with measured data (dots) with RMS error of 0.28Hz over all angles.
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Figure 2.1: Comparison of the model prediction [Eq. (2.1), solid line] and
measurement (dots) as a function of the bearing angle ξ; see Fig. 1.

Task 3

Given that the hydrophone is at a depth of d = 90m, estimate the speed of the aircraft (in meters per second),

the altitude of the aircraft (in meters), the source (or rest) frequency (in hertz), and the time (in seconds) at

which the aircraft is at its closest point of approach to the hydrophone (i.e., when the source is directly above

the sensor).

Figure 3.1: (Left) Predicted instantaneous frequency for sources with veloc-
ities of 0.75v0, v0, and 1.25v0, with v0 = 123m/s. (Right) Predicted instan-
taneous frequency for sources with heights of 0.25h0, h0, and 1.75h0, with
h0 = 500m.

A full nonlinear fitting of Eqs. (1.1) to (1.3) to the measured data would give optimal esti-
mation of these parameters. However, a simpler approach is to check the influence of each
variable and see if it may be estimated independently from the others. Figure 3.1 demon-
strates the e�ect of the source speed v and altitude h on the predicted instantaneous fre-
quency. From these it is seen that the magnitude of the frequency shift is governed by plane’s
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speed (Fig. 3.1, left), while the time interval over which this change occurs is determined
by its altitude (Fig. 3.1, right). Then, since the shift is symmetric about the approach, the
source frequency f0 can be recovered by averaging the maximum and minimum observed
frequencies.

Inspecting the frequency shift in the measured data (Fig. 3.2) indicates a frequency shift of
∆ f = ±4.12Hz about a center frequency of f0 = 69.12Hz. This center frequency is achieved
at t = 54.6 s in the file—i.e., the time at which the source flies directly overhead. Fitting the
velocity to achieve this shift gives a best fit velocity of v = 95.97m/s. A value of h = 150m was
used for the fit; however, the acoustic signature is not a strong function of altitude (cf. Fig. 3.1,
right), thus the source altitude uncertainty is on the order of 100m.

Figure 3.2: Comparison of instantaneous frequency calculated with
Eq. (1.3) (black line) overlaid with normalized hydrophone time series data
(grayscale). For the model, the found best fit parameters were f0 = 69.12Hz,
v = 95.97m/s, and h = 150m. The time origin was set to t0 = 54.6 s. The
dynamic range for the colorplot is 24 dB.

A Alternate Derivation of Frequency Shift

Call the path lengths of the ray in the air and water r1 and r2, respectively as in Fig. A.1. The excess
phase of the ray that arrives at the receiver will be

φ = k1r1 + k2r2

=
ω0

c1

h
cos θ1

+
ω0

c2

d
cos θ2

. (A.1)
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Figure A.1: Geometry for the ray length consideration of the frequency
shift.

Thus the instantaneous shift in frequency is given by

ω(t) =
dφ

dt
=

d

dt

[
ω0

c1

h
cos θ1

+
ω0

c2

d
cos θ2

]
. (A.2)

Because numerical solutions for θ1(t) and θ2(t) can be obtained from Eqs. (1.1) and (1.2), we can forgo
the algebra and simply approximate Eq. (A.2) via ω ≈ ∆φ/∆t. Figure A.2 shows agreement between
Eq. (A.2) and the result using the Doppler shifted ray [Eq. (1.3)].

Figure A.2: Comparison of computed instantaneous frequency with
Eq. (1.3) (solid line) and Eq. (A.2) (dashed line).
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B MATLAB Code

Code is available for download on GitHub:
https://github.com/scottschoenjr/asaChallenge2019.

B.1 Problem 1

%**************************************************************************
%

% ASA Student Challenge Problem 2019

%

% Problem 1 − Plots the incident angle of the arrival ray as a function

% of time, as well as the resulting Doppler shifted frequency as a

% function of time, for comparison with the provided measurements.

%

%

% Scott Schoen Jr | Georgia Tech | 30 September 2019

%

%**************************************************************************

clear all

close all

clc

dataFile = '../media/timeVsFreq.txt';

% Load in data

allData = importdata( dataFile );

tMeas = allData( :, 1 );

fMeas = allData(:, 2 );

% Problem parameters

d = 20; % [m]

h = 151; % [m]

v = 123; % [m/s]

f0 = 68; % [Hz]

c1 = 343; % [m/s]

c2 = 1520; % [m/s]

% Define plane position at each point

t = linspace( −1.4, 1.4, 1E3 );

x = −v.*t;

% Initialize

thetac = asin( c1./c2 );
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theta0 = 0.99.*[ −thetac, thetac ];

theta1 = 0.*t;

% Find theta1 as function of time

for tCount = 1 : length(t)

% Current plane position

D = x(tCount);

% Function to be solved for theta1 at each point

thetaVec = linspace( theta0(1), theta0(2), 100 );

zeroFunction = @(thetaVar) ...

D − (h.*tan(thetaVar) + d.*tan( asin((c2./c1).*sin(thetaVar)) ) );

theta1(tCount) = fzero( zeroFunction, theta0 );

end

% Plot theta1 as a function of time

figure();

hold all;

plot( t, 180.*theta1./pi, 'k' );

plot( t, 0.*t + 180.*thetac./pi, '−−k', 'LineWidth', 2 );

plot( t, 0.*t − 180.*thetac./pi, '−−k', 'LineWidth', 2 );

xlabel( 'Time [s]', 'FontSize', 24 );

ylabel( '$\theta_{1}$ [deg]', 'FontSize', 24 );

grid on;

box off;

% Compute theta2

theta2 = asin( (c2./c1).*sin(theta1) );

% Compute the instantaneous frequency at the surface

fw = f0.*( 1 − (v./c1).*sin( theta1 ) ).^(−1);

% Plot frequency vs time

figure();

hold all;

plot( t, fw, 'k', 'LineWidth', 3 );

plot( tMeas, fMeas, 'ko', 'MarkerFaceColor', 'k' );

ylabel( 'Frequency [Hz]', 'FontSize', 24 );

xlabel( 'Time [s]', 'FontSize', 24 );
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ylim([60, 80]);

grid on;

box off;

% Compute RMS error

tMin = min(tMeas);

tMax = max(tMeas);

tMeasCompare = tMeas( (tMeas >= tMin) & (tMeas < tMax) );

fMeasCompare = fMeas( (tMeas >= tMin) & (tMeas < tMax) );

fErrors = 0.*tMeasCompare; % Initialize

for tMeasCount = 1 : length( tMeasCompare )

% Find closest index

tLoop = tMeasCompare( tMeasCount );

[~, tInd] = min( abs( t − tLoop ) );

% Get prediction and estimated frequency at that time.

fLoop = fMeasCompare( tMeasCount );

fPredicted = fw( tInd );

% Store

fErrors( tMeasCount ) = fPredicted − fLoop;

end

B.2 Problem 2

%**************************************************************************
%

% ASA Student Challenge Problem 2019

%

% Problem 2 − Plots the Doppler shifted frequency as a function of

% the bearing angle from the array for comparison with the provided

% measurements.

%

% Scott Schoen Jr | Georgia Tech | 30 September 2019

%

%**************************************************************************

clear all

close all

clc
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dataFile = '../media/freqVsBearing.txt';

% Load in data

allData = importdata( dataFile );

fVec = allData( :, 1 );

bearingVec = allData(:, 2 );

% Problem parameters

d = 20; % [m]

h = 151; % [m]

v = 125; % [m/s]

f0 = 68.3; % [Hz]

c1 = 343; % [m/s]

c2 = 1520; % [m/s]

% Define plane position at each point

t = linspace( −1.4, 1.4, 100 );

x = −v.*t;

% Initialize

thetac = asin( c1./c2 );

theta0 = 0.99.*[ −thetac, thetac ];

theta1 = 0.*t;

% Find theta1 as function of time

for tCount = 1 : length(t)

% Current plane position

D = x(tCount);

% Function to be solved for theta1 at each point

thetaVec = linspace( theta0(1), theta0(2), 100 );

zeroFunction = @(thetaVar) ...

D − (h.*tan(thetaVar) + d.*tan( asin( (c2./c1).*sin(thetaVar) ) ) );

theta1(tCount) = fzero( zeroFunction, theta0 );

end

% Compute theta2 depression angles

theta2 = asin( (c2./c1).*sin(theta1) );

gamma = pi./2 − theta1;

xi = pi./2 − theta2;

% Compute the instantaneous phase

fw = f0.*( 1 − (v./c1).*cos( gamma ) ).^(−1); % At the surface
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% Plot bearing vs frequency

figure();

hold all;

plot( 180.*xi./pi, fw, 'k', 'LineWidth', 3 );

plot( bearingVec, fVec, 'ko', 'MarkerFaceColor', 'k' );

set( gca, 'XTick', 0:30:180 );

ylabel( 'Frequency [Hz]', 'FontSize', 24 );

xlabel( 'Bearing Angle $\xi$ [deg]', 'FontSize', 24 );

ylim([60, 80]);

grid on;

box off;

lh = legend( '~~Prediction [Eq. (2.1)]', '~~Measurement', ...

'FontSize', 18, 'Interpreter', 'LaTeX', 'EdgeColor', 'none' );

% Compute RMS error

xiMin = min(bearingVec);

xiMax = max(bearingVec);

tMin = −0.5;

tMax = 0.5;

xiMeasCompare = bearingVec( (bearingVec >= xiMin) & (bearingVec < xiMax) );

fMeasCompare = fVec( (bearingVec >= xiMin) & (bearingVec < xiMax) );

fErrors = 0.*xiMeasCompare; % Initialize

for xiMeasCount = 1 : length( xiMeasCompare )

% Find closest index

xiLoop_deg = xiMeasCompare( xiMeasCount );

[~, xiInd] = min( abs( 180.*xi./pi − xiLoop_deg ) );

% Get prediction and estimated frequency at that time.

fLoop = fMeasCompare( xiMeasCount );

fPredicted = fw( xiInd );

% Store

fErrors( xiMeasCount ) = fPredicted − fLoop;

end
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% Return RMS error

rmsError = rms( fErrors );

B.3 Problem 3

%**************************************************************************
%

% ASA Student Challenge Problem 2019

%

% Script loads the time series hydrophone data and compares the measured

% time frequency data with the calulated shifts.

%

% Scott Schoen Jr | Georgia Tech | 30 September 2019

%

%**************************************************************************

clear all

close all

clc

% Problem parameters

d = 90; % [m]

h = 150; % [m]

v = 94; % [m/s]

f0 = 68.36; % [Hz]

c1 = 343; % [m/s]

c2 = 1520; % [m/s]

% Load in hydrophone data

dataFile = '../media/hydrophoneSignal.wav';

[hydSig, Fs] = audioread(dataFile);

% Downsample for efficiency

fMax = 30E3; % [Hz]

N = length( hydSig );

fRatio = Fs./fMax;

indsToKeep = round( 1 : fRatio : N );

hydSig = hydSig( indsToKeep );

% Set time of plane overhead

tOffset = 54.6; % [s]

measuredShift = 4.12; % [Hz]

% Normalize
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hydSigNorm = hydSig./max(abs(hydSig));

% Get time signal

N = length( hydSig );

dt = 1./fMax;

tVec = 0 : dt : (N − 1).*dt;

% First sweep through and find the velocity to match this shift

vVec = linspace( 94.5, 96.5, 50 );

deltaf = 0.*vVec;

for vCount = 1 : length( vVec )

% Define plane position at each point

t = linspace( −4, 4, 100 );

x = −vVec(vCount).*t;

% Initialize

thetac = asin( c1./c2 );

theta0 = 0.99.*[ −thetac, thetac ];

theta1 = 0.*t;

% Find theta1 as function of time

for tCount = 1 : length(t)

% Current plane position

D = x(tCount);

% Function to be solved for theta1 at each point

thetaVec = linspace( theta0(1), theta0(2), 100 );

zeroFunction = @(thetaVar) ...

D − (h.*tan(thetaVar) + d.*tan(asin((c2./c1).*sin(thetaVar))));

theta1(tCount) = fzero( zeroFunction, theta0 );

end

% Compute theta2 depression angles

theta2 = asin( (c2./c1).*sin(theta1) );

gamma = pi./2 − theta1;

xi = pi./2 − theta2;

% Compute the instantaneous phase

fw = f0.*( 1 − (v./c1).*cos( gamma ) ).^(−1); % At the surface

% Get frequency range

deltaf( vCount ) = max(fw) − min(fw);
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end

% Get the optimal velocity

[~, vInd] = min( abs( deltaf./2 − measuredShift ) );

% Compute shifts for that velocity

v = vVec(vInd);

x = −vVec(vInd).*t;

% Initialize

thetac = asin( c1./c2 );

theta0 = 0.99.*[ −thetac, thetac ];

theta1 = 0.*t;

% Find theta1 as function of time

for tCount = 1 : length(t)

% Current plane position

D = x(tCount);

% Function to be solved for theta1 at each point

thetaVec = linspace( theta0(1), theta0(2), 100 );

zeroFunction = @(thetaVar) ...

D − (h.*tan(thetaVar) + d.*tan( asin( (c2./c1).*sin(thetaVar) ) ) );

theta1(tCount) = fzero( zeroFunction, theta0 );

end

% Compute theta2 depression angles

theta2 = asin( (c2./c1).*sin(theta1) );

gamma = pi./2 − theta1;

xi = pi./2 − theta2;

% Compute the instantaneous phase

fw = f0.*( 1 − (v./c1).*cos( gamma ) ).^(−1); % At the surface

%% Plot spectrogram and overlay the predicted frequency

figure();

hold all;

[s, fVec, tVec] = spectrogram(hydSigNorm, 2.^(15), 2.^(14), [], fMax, 'yaxis');

[T, F] = meshgrid( tVec, fVec );

pcolor( T − tOffset, F, 20.*log10(abs(s)./max(abs(s(:)))) );

colormap( flipud( colormap( gray ) ) );
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shading interp;

plot( t, fw, 'k', 'LineWidth', 5 );

ylim( [55, 85] );

xlim(3.75.*[ −1, 1]);

caxis([−24, 0]);

xlabel( 'Time [s]', 'FontSize', 24 );

ylabel( 'Frequency [Hz]', 'FontSize', 24 );

set( gca, 'XTick', −5:5 );

cbh = colorbar;

cbh.Location = 'North';

cbh.Position = [0.675, 0.8, 0.17, 0.02];

cbh.Ticks = [];

grid on;

box off;
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